Please check the examination details below before entering your candidate information					
Candidate surname		Other names			
Centre Number Candidate Nu	mber				
Pearson Edexcel Level	1/Lev	rel 2 GCSE (9-1)			
Friday 16 June 2023					
Morning (Time: 1 hour 10 minutes)	Paper reference	1SC0/2PH			
Combined Science	e	△ •			
PAPER 6					
		Higher Tier			
You must have: Calculator, ruler, Equation Booklet (end	closed)	Total Marks			

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

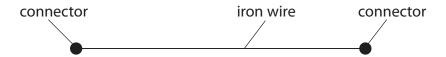
- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or
- A list of equations is included at the end of this exam paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

follow on from each other where appropriate.

Turn over ▶



Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 (a) Figure 1 shows some of the apparatus that students use to determine the resistance of a piece of iron wire.

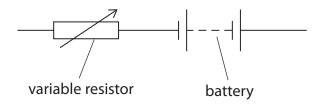


Figure 1

Add connecting wires, a voltmeter and an ammeter to complete the circuit in Figure 1 so that the students can determine the resistance of the piece of iron wire.

(2)

- (b) The students extend the investigation to determine how the resistance of the iron wire changes with its length.
 - (i) Give the name of **one** additional piece of apparatus the students would need.

(1)

(ii) Figure 2 shows a graph of the results.

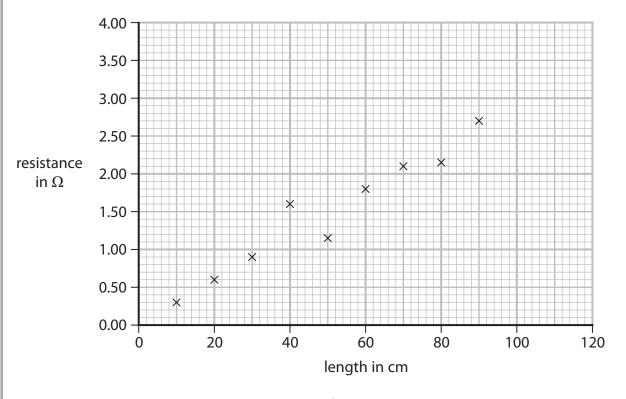


Figure 2

Draw a straight line of best fit on Figure 2.

(1)

(iii) Use Figure 2 to estimate the resistance of a 100 cm length of the iron wire.

(1)

resistance = Ω

(iv) The variable resistor shown in Figure 1 is used to prevent the iron wire from becoming too hot.

Explain how the variable resistor is used to prevent the iron wire from becoming too hot.

(2)

(c) The potential difference (voltage) across another piece of wire is 1.56 V.

The current in the wire is 0.45 A.

Calculate the resistance of this piece of wire.

Use the equation

$$V = I \times R$$

(2)

resistance = Ω

(Total for Question 1 = 9 marks)

2	(a)	Which of these means	changing	state from	solid direct	ly to d	nas?
_	(a)	Milicii di filese illegiis	Changing	state mom	30110 UITECT	ινιοι	yas:

(1)

- A condensing
- B freezing
- **D** sublimating
- (b) An object has a mass of 7.22×10^{-2} kg and a volume of 2.69×10^{-5} m³.

Calculate the density, ρ , of the object.

Use the equation

$$\rho = \frac{\mathsf{m}}{\mathsf{V}}$$

(3)

State the unit.

density = unit

(c) Aluminium has a melting point of 660 °C.

The absolute zero of temperature is -273 °C.

(i) Calculate the melting point of aluminium in kelvin.

(1)

melting point of aluminium =K

	ii) Describe the motion of particles in liquid aluminium (above 660°C).	(2)
	A student determines the volume of a piece of metal by measuring the volume of water that it displaces.	
-	The student wrote the following in his notebook.	
	I put some water into a measuring cylinder. I put the piece of metal into the water in the measuring cylinder. I took the reading of the new water level in the measuring cylinder. This was the volume of the piece of metal.	
-	Γhe student's description is incomplete.	
(Suggest two sentences that the student could have included to provide a more	
	complete description of the correct procedure.	
	complete description of the correct procedure.	(2)
	complete description of the correct procedure.	(2)
	complete description of the correct procedure.	(2)
	complete description of the correct procedure.	(2)

3 (a) Figure 3 shows two magnets with their N poles facing each other.

S N

N S

Figure 3

On Figure 3, draw the shape and direction of the magnetic field between the two magnets.

(2)

(b) Figure 4 shows a toy that has a plastic cylinder, a plastic base and two similar magnets. Each of the two magnets is in the shape of a ring.

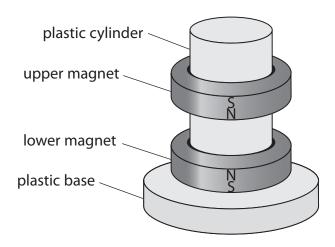


Figure 4

The upper magnet seems to float in the air above the lower magnet.

Describe the forces acting on the upper magnet.

Use the idea of magnetic fields in your answer.

//	~	٦
		-1
٧.	_3	- 1
	_	,,

(c) Figure 5 shows a current-carrying wire between the poles of a magnet.

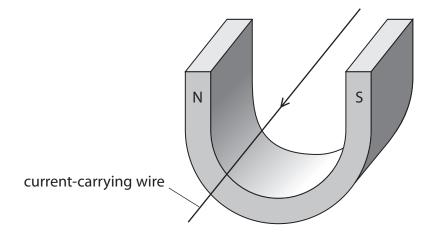


Figure 5

(i) The magnet and the wire each experience a force when there is a current in the wire.

(2)

- 1 State the direction of the force on the wire.
- 2 State the direction of the force on the magnet.
- (ii) The force on the wire is 0.15 N.

The current in the wire is 2.7 A.

The magnet produces a field with a magnetic flux density of 0.50T.

Calculate the length of the wire in the magnetic field.

Use an equation selected from the list of equations given at the end of the question paper.

(2)

length of the wire in the magnetic field =m

(Total for Question 3 = 9 marks)

4 (a) Figure 6 shows part of the inside of a pen.

The pen contains a spring that can be compressed.

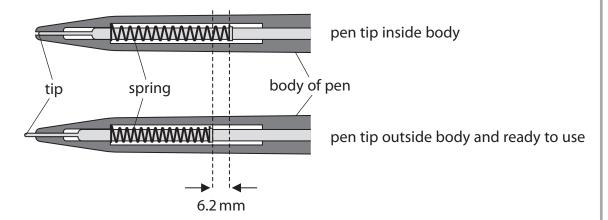


Figure 6

The spring constant of the spring is 260 N/m.

(i) Calculate the force needed to compress the spring by the amount shown in Figure 6.

Give your answer to an appropriate number of significant figures.

(3)

torce :	_	N
())(-	_	- 1 \

(3)

(ii) A student removes the spring from the pen and investigates the compression of the spring.

Figure 7 shows the equipment and the procedure that the student uses.

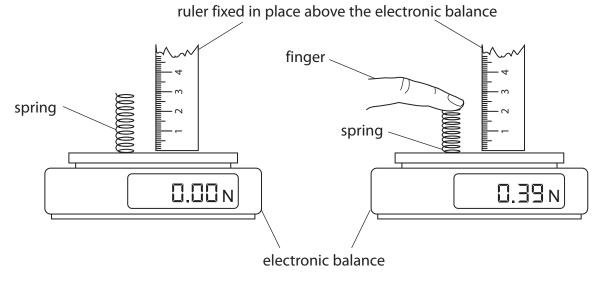


Figure 7

The student presses down on the spring to change its length.

The electronic balance measures the force applied to the spring.

Describe how the student can determine the change in length of the spring. You may add to Figure 7 to help your answer.

(iii) The student finds it difficult to make an accurate measurement of the change in length of the spring using the equipment as shown.

Describe **one** way that the student could improve the procedure.

(2)

(b) Figure 8 shows a different spring hanging from a hook fixed to the ceiling.

A block hangs from the other end of the spring.

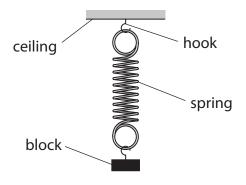


Figure 8

The weight of the spring is 1 N. The weight of the block is 5 N.

The force exerted on the top of the spring by the hook is

(1)

- A 4N down
- B 4Nup
- C 6N down
- (c) Figure 9 shows two forces, P and Q, acting at point X.

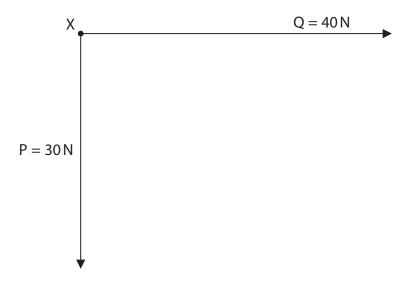


diagram is drawn to scale

Figure 9

Complete the diagram in Figure 9 to show the size and direction of the resultant force, R, on point X.

(2)

(Total for Question 4 = 11 marks)

5 (a) An electric car is travelling at a speed of 16.0 m/s.

The total mass of the car is 1200 kg.

(i) Calculate the kinetic energy, in kJ, of the car.

(2)

kinetic energy =kJ

(ii) On a journey, the car transfers energy from the battery at an average rate of 17.5 kW.

The battery in the car transfers a total of 126 MJ of energy before it becomes discharged.

Calculate the time taken for the battery to become discharged on this journey.

Give your answer in hours.

(2)

time taken = hours

(iii) Figure 10 shows an electrical device connected to the wheels of an electric car.

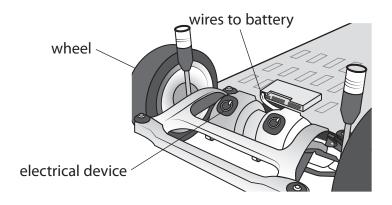


Figure 10

The electrical device is used as a motor when the car accelerates and as a dynamo when the car decelerates.

Explain how using the device can help to increase the time that the car can be driven before the battery becomes discharged.

|
 |
|------|------|------|------|------|------|------|
| | | | | | | |
|
 |

(2)

(b) The battery can be recharged at a charging point.

The charging point provides an average current of 15.0 A to the battery, at a potential difference (voltage) of 400 V.

It is claimed that 126 MJ of energy can be transferred to the battery in less than 6 hours.

(i) Comment on this claim.

Use this equation to support your answer

$$:=\frac{\mathsf{E}}{\mathsf{I}\times\mathsf{V}}\tag{3}$$

(ii) Calculate the total charge that moves into the battery while it is being recharged.

Use the equation

$$E = Q \times V$$

(2)

(Total for Question 5 = 11 marks)

BLANK PAGE

6 (a) Figure 11 shows a pulley system that enables a person to lift a heavy barrel.

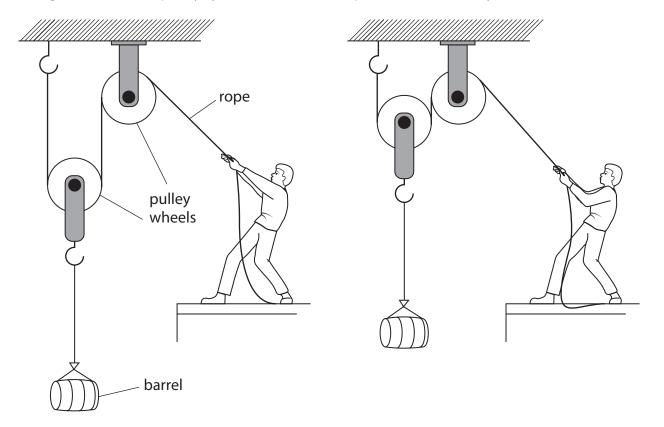


Figure 11

The person pulls down on the rope to make the barrel rise through 1.2 m.

The work done against gravity on the barrel is 1800 J.

(i) Calculate the weight of the barrel.

Use the equation

work done = force \times distance moved in the direction of the force

(2)

weight of the barrel =N

(ii) The efficiency of the system is 64%.

Calculate the total work done by the person.

Use the equation

efficiency =
$$\frac{\text{(work done against gravity on the barrel)}}{\text{(total work done by the person)}} \times 100\%$$

(2)

work done =

(iii) Some energy is wasted due to friction.

Suggest **another** reason why some energy is wasted in using this pulley system.

(1)

*(b) A student has the equipment shown in Figure 12.

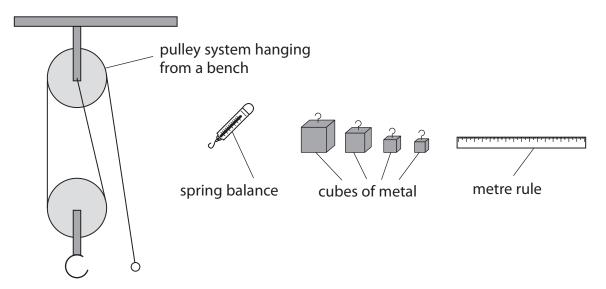


Figure 12

Devise an experiment to investigate how the efficiency of the pulley system varies with the weight of metal being lifted.

(Tot	al for Question 6 = 11 marks)
- -	16 0 2 6 44 1 1
	(6)
Your answer should include how you will use your meas	

TOTAL FOR PAPER = 60 MARKS

Equations

(final velocity)² – (initial velocity)² = $2 \times acceleration \times distance$

$$v^2 - u^2 = 2 \times a \times x$$

force = change in momentum \div time

$$F = \frac{(mv - mu)}{t}$$

energy transferred = current \times potential difference \times time

$$E = I \times V \times t$$

force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density \times current \times length

$$F = B \times I \times l$$

 $\frac{\text{potential difference across primary coil}}{\text{potential difference across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$

$$\frac{V_p}{V_s} = \frac{N_p}{N_s}$$

potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil

$$V_p \times I_p = V_s \times I_s$$

change in thermal energy = mass \times specific heat capacity \times change in temperature

$$\Delta Q = m \times c \times \Delta \theta$$

thermal energy for a change of state = $mass \times specific$ latent heat

$$Q = m \times L$$

to calculate pressure or volume for gases of fixed mass at constant temperature

$$P_1 V_1 = P_2 V_2$$

energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$

$$E = \frac{1}{2} \times k \times x^2$$

pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength

$$P = h \times \rho \times g$$

BLANK PAGE

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In Physics (1SC0) Paper 2PH

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Publications Code 1PH0_2H_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word			
Strand	Element	Describe	Explain		
AO1		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required		
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)		
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description			
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning		
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment			
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning		

Question number	Answer	Additional guidance	Mark
1 (a)	voltmeter connected in parallel with the iron wire / any part of the iron wire (1) ammeter connected in series with the iron wire (1)	accept any recognisable symbols.	(2) AO1
	example: connector iron wire connector variable resistor battery	accept symbol drawn over connecting wire do not credit the same type of meter shown in contradictory positions	

Question number	Answer	Additional guidance	Mark
1 (b)	one from (1) metre rule / metre stick / ruler / (measuring) tape / crocodile clip / other clip / wire cutters / pliers / sliding contact jockey / more (iron) wire	accept scissors	(1) AO1
		ignore additional electrical devices such as ohmmeter / multimeter	

Question number	Answer	Additional guidance	Mark
1 (b) (ii)	(ii) Figure 4 shows a graph of the results. $\begin{array}{c} 4.00 \\ 3.50 \\ \hline 3.00 \\ 2.50 \\ \hline resistance \\ in \Omega \end{array}$		(1) AO2
		accept any straight line within the shaded range judge by eye. ignore extrapolation for this marking point	

Question number	Answer	Additional guidance	Mark
1(b)(iii)	any number between 2.7 and 3.3 inclusive	allow ecf from (ii) $\pm 0.1\Omega$	(1) AO2

Question number	Answer	Additional guidance	Mark
1 (b) (iv)	explanation linking any two from:	accept flow of electrons / charge for current in this context	(2) AO2
	(variable) resistor increases the resistance (of the circuit) (1)		
	(therefore) keeps the current constant / small(er) (1)	reduces current / limits the current	
		ignore slows the current / charge	
	because current increases temperature of the (iron) wire (1)	accept current heats up (iron) wire	
		accept for two marks: adjust variable resistor to keep current constant / small	

Question number	Answer	Additional guidance	Mark
1 (c)	substitution (1)	alternative method rearrangement (1)	(2) AO2
	1.56 = 0.45 x R	$(R =) \frac{V}{I}$	
		or	
		(R=) <u>1.56</u> 0.45	
	rearrangment and evaluation (1)	(substitution and) evaluation (1)	
	(R =) 3.5 (ohms)	(R =) 3.5 (ohms)	
		allow values that round to 3.5 e.g. 3.46(666) 3.47 etc	
		award full marks for the correct answer without working	

Total 9 marks (H paper)

Question number	Answer	Mark
2(a)	 ☑ D sublimating A is incorrect because it describes a change of state from gas to liquid. B is incorrect because it describes a change of state from liquid to solid C is incorrect because it describes a change of state from solid to liquid 	(1) AO1

Question number	Answer	Additional guidance	Mark
2(b)	substitution (1) $(r) = \frac{7.22(\times 10^{-2})}{2.69(\times 10^{-5})}$ evaluation (1)	2.68 to any power of ten seen	(3) AO2
	(ρ =) 2680	allow any value that rounds to 2680; e.g. 2684	
		accept 2700	
		allow values in standard form e.g. 2.68×10^3	
	unit (1) kg / m ³	kg m ⁻³	
		allow for three marks: 2.68 to any power of ten with a consistent unit, e.g. 2680 kg/m³ 2680 g/dm³ 2.68 g/cm³ 2.68 kg/dm³ 0.00268 kg/cm³ 2 680 000 g/m³	
		allow for two marks: • 2680 with no or incorrect unit • 2.68 to any other power of 10 with an inconsistent unit of density • correct substitution with an inconsistent unit of density	
		 allow for one mark: 2680 to any other power of ten with no or incorrect unit appropriate unit of density with no or an incorrect value 	

Question number	Answer	Additional guidance	Mark
2 (c) (i)	933 (1)	do not accept -933 ignore K ignore degrees ignore °	(1) AO2

Question number	Answer	Additional guidance	Mark
2(c)(ii)	A description to include any two from:		(2) AO1
	(motion is) random (1)	move freely / move in any direction / move around	
	various {speeds / velocities / kinetic energies} (1)	different speeds range of speeds	
	bump into each other / collide (1)	slide over / past each other / touch each other / in contact with each other	
	fast(er than solid) (1)	more kinetic energy (than in solid) ignore bulk properties of liquids e.g. take shape of container. ignore vibrate	
		"random speeds" on its own scores 1 mark	

H paper only:

Question number	Answer	Additional guidance	Mark
2(d)	Any two from the following in any order	Answers need not be exactly the same as those given here provided that the meaning is clear.	(2) AO1
	(I took a) reading of the water level in the measuring	accept measured / read for take a reading	
	cylinder without the metal. (1)	accept reading of original level / volume	
		accept starting with a specified amount e.g. 50ml	
	(I made sure that) the metal was fully immersed / submerged (1)	all the metal was under water	
	(I) subtracted the two readings / volumes (1)	took one from the other / found the difference	
		ignore: repeat and/or average	
		other measurements such as mass	
		other methods such as Eureka can	
		ideas of spillage	
		reading from bottom of meniscus	

Question number	Answer	Additional guidance	Mark
	at least four lines as shown (1) at least two arrows directed away from N poles (1)		(2) AO1

Question number	Answer	Additional guidance	Mark
3 (b)	any three from	marks can be awarded from a correctly labelled diagram	(3) AO1
	magnetic fields interact (1)	magnets are in each other's magnetic field	
	(force due to) repulsion (between magnets) (1)	repel / push away	
	(repulsion) force upwards (on upper magnet) (1)		
	weight / gravitational force (downwards on upper magnet) (1)	accept gravity (acts downwards)	
	forces equal size / in equilibrium (1)	forces are balanced	
		ignore references to charge	

Question number	Answer	Additional guidance	Mark
3 (c) (i)		independent marks	(2) AO1
	1 up(wards) (1)	accept out(wards from the magnet)	
	2 down(wards) (1)	accept in(wards) / into (magnet)	
		allow 1 mark for 1 down / in(wards) AND 2 up / out(wards)	

Question number	Answer	Additional guidance	Mark
3(c) (ii)		alternative method	(2) AO2
	substitution (1)	re-arrangement (1)	A02
	$0.15 = 0.5(0) \times 2.7 \times L(ength)$	$(length =) \frac{F}{B \times I}$	
		Or	
		(length =) $\frac{0.15}{0.5(0) \times 2.7}$	
	rearrangement and evaluation (1)	(substitution and) evaluation (1)	
	(length =) 0.11 (m)	(length =) 0.11 (m)	
		allow any values that round to 0.11 e.g 0.111	
		accept 0.1 or 0.1 (m)	
		allow 1 mark for answer of 9 (with or without working)	
		award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
4(a) (i)	selection and substitution (1) (F=) 260 x 6.2 (x 10 ⁻³) evaluation (1) (F=) 1.612 (N) or 1.61 (N)	award 1 mark only for answer of 1.61(2) to any other power of ten, e.g. 1612 (N)	(3) AO2
	answer to 2 s.f. (1) 1.6 (N)	independent mark for any answer given to 2 significant figures allow 2 marks for answer of 1600 (N) with or without working 1.60 scores 2 marks award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
4(a) (ii)	a description including	May be seen drawn in figure 7	(3) AO1
	read position of top of spring against the ruler (1)	measure length at the start	
		allow value from ruler e.g. 2.9 (cm)	
	read position of top of spring when pressed down (1)	measure the length when pressed down	
		allow value from ruler e.g. 2.0 (cm)	
	subtract the two readings (1)	subtract the two measurements	
		allow find the difference for subtract	
		allow calculated value from diagram e.g. 0.9 (cm)	
		ignore repeat	
	OR		
	substitution (1)		
	0.39 = 260 x change in length		
	rearrangement (1) (change in length =) 0.39 260		
	evaluation (1) 1.5 mm unit must be shown	(0).0015m unit must be shown	

Question number	Answer	Additional guidance	Mark
4 (a) (iii)	description to include	may be seen drawn in Figure 7	(2) AO3
	change to enable accurate location of top of spring (1)		
	for example: pointer, set square, thin sheet / another ruler (under finger)	move ruler closer to spring	
		compress spring with weight rather than finger	
		ignore photographs	
	description of how the change is used (1)	make measurements from where pointer / set square / thin sheet / other ruler touches the ruler	
		reduce parallax error	
		prevents fluctuations while measuring	
		ignore repeats	
		ignore unqualified references to accuracy or precision	

Question number	Answer	Additional guidance	Mark
4 (b)	D 6 N up A and C are incorrect because the force is upwards B is incorrect because the force is the sum of the two weights given.		(1) AO3

Question number	Answer	Additional guidance	Mark
4 (c)	arrow (any length) (labelled R) in correct direction (judge by eye) (1)	P = 30N Q = 40N R = 50N	(2) AO1
		construction lines need not be shown arrow head must be present for MP1	
	(size of R =) 50N (1)	accept answers in range 48N to 52N obtained from scale drawing working need not be shown	

Total 11 marks

Question number	Answer	Additional guidance	Mark
5 (a) (i)	selection and substitution (1) (KE =) $\frac{1}{2}$ x 1200 x 16(.0) ²	(KE =) ½ x 1200 x 16(.0) ² x 10 ⁻³	(2) AO2
	evaluation in kJ (1) (KE =) 150 (kJ)	accept any value that rounds to 150 e.g. 153.6 award full marks for correct answer without working. award 1 mark for 153.6 or 150 to any other power of ten	

Question number	Answer	Additional guidance	Mark
5 (a) (ii)		alternative method	(2) AO2
	selection and substitution (1)	selection and rearrangement (1)	A02
	17.5 (x 10 ³) = $\frac{126 (x10^6)}{t}$	(t =) <u>E(nergy)</u> P(ower) or	
		$(t=) \frac{126 (x10^6)}{17.5 (x 10^3)}$	
	re-arrangement and evaluation (1)	(substitution and) evaluation (1)	
	(t=) 2(.0) (h)	(t=) 2(.0) (h)	
		award full marks for correct answer without working.	
		allow 1 mark for 7(.2) to any power of ten (incorrect time conversion)	
		allow 1 mark for 2(.0) to any power of 10 (POT error)	

Question number	Answer	Additional guidance	Mark
5 (a) (iii)	an explanation linking (energy transfers when the car is decelerating)		(2) AO2
	(from) kinetic energy (store) (1)	idea of energy that would be otherwise wasted	
		uses an electrical pathway	
		{electric current / electricity / emf} produced	
		allow mechanical for kinetic in this context	
	(to) chemical energy (store) (1)	recharges battery	
		increases available energy store of battery	
		more useful energy available	

Question number	Answer	Additional guidance	Mark
number 5(b) (i)	either calculation of time: substitution (1) (t =) 126 (x 10 ⁶) 15 x 400 (x 3600) evaluation (1) (t=) 5.8(3) (h)	accept correct time conversion e.g. 5h 50 min 350 min 21 000 s award 2 marks for correct answer without working	(3) AO3
	conclusion (1) claim is justified as the time is less (than 6 hours) or calculation of energy:	without working. award 1 mark for answer of either 2.1 or 5.8(3) to any other power of ten allow relevant comment based on incorrectly calculated time (independent mark)	
	substitution (1) 6 (x 3600) =E	accept 129.6 MJ accept 129 600 000 J allow relevant comment based on incorrectly calculated energy (independent mark)	

Question number	Answer	Additional guidance	Mark
5 (b) (ii)	substitution (1)	alternative method re-arrangement (1)	(2) AO2
	$126 (x 10^6) = Q x 400$	$(Q =) \underline{\underline{E}} V$	
		or	
		$(Q =) \frac{126 (x 10^6)}{400}$	
	re-arrangement and evaluation (1)	(substitution and) evaluation (1)	
	(Q =) 315 000 (coulombs)	(Q =) 315 000 (coulombs)	
		accept answers rounding to 320 000 (coulombs)	
		allow one mark for answers rounding to 3.2 to any other power of ten	
		award two marks for correct answer without working.	

Total 11 marks

Question number	Answer	Additional guidance	Mark
6 (a) (i)	substitution into work done = force x distance (1) 1800 = force x 1.2	alternative method rearrangement (1) (force =) $\frac{\text{work (done)}}{\text{d(istance moved)}}$ or (force =) $\frac{1800}{1.2}$	(2) AO2
	rearrangement and evaluation (1)	(substitution and) evaluation (1)	
	(force =) 1500 (N)	(force =) 1500 (N) if no other marks scored allow one mark for answer of 500 (N) or 4500 (N) award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
6 (a) (ii)	substitution (1)	alternative method re-arrangement (1)	(2) AO2
	64 = <u>1800 x 100</u> total work done	(total work done =) work done on barrel x 100 efficiency	
	or	or	
	0.64 = <u>1800</u> total work done	(work done=) <u>1800 x 100</u> 64	
		or (work done=) <u>1800</u> 0.64	
	rearrangement and evaluation (1)	(substitution and) evaluation (1)	
	(work done =) 2800 (J)	(work done =) 2800 (J)	
		allow values that round to 2800; e.g. 2812.5	
		award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
6 (a) (iii)	any one of		(1) AO1
	additional mass in the system (1)	(bottom) pulley / rope has {mass / weight}	
		ignore references to the mass / weight of barrel	
	rope stretches (1)	tension in rope	
		ignore references to consequences of friction such as air resistance, heat or sound.	
		ignore pulling at an angle	
		ignore references to person	

*6 (b) Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. Use of equipment Provide a measurable load; for example hang a cube on one end of the system / on spring (balance)	
 Provide a measurable load; for example hang a cube on one end of the system / 	
 Provide a measurable effort; for example hang spring balance on other end of system Method to measure distances moved; for example use metre rule Obtaining relevant data Measure weight of cube with spring balance Take reading of spring balance when being pulled Measure height by which the cube is raised Measure distance moved by (end of) spring balance. Processing results calculate work done on cube = obtained weight x obtained distance calculate work done by student = obtained force x obtained distance calculate efficiency as (calculable) work done on cube / (calculable) work done by student inspect results to look for relationship between weight of cube and efficiency plot graph of efficiency against weight 	

Level	Mark	Descriptor	
	0	No awardable content	
Level 1 1-2		 Analyses the scientific information but understanding and connections are flawed. (AO3) 	
		 An incomplete plan that provides limited synthesis of understanding. (AO3) 	
Level 2	evel 2 • Analyses the scientific information and provides som connections between scientific enquiry, techniqu procedures. (AO3)		
		 A partially completed plan that synthesises mostly relevant understanding, but not entirely coherently. (AO3) 	
Level 3	vel 3 • Analyses the scientific information and provide logical between scientific enquiry, techniques and procedure.		
		 A well-developed plan that synthesises relevant understanding coherently. (AO3) 	

Level	Mark	Additional Guidance	General additional guidance – the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance	Possible candidate responses
		At least two uses of equipment	Hang cubes on hook Spring balance on ring
Level 2	3-4	Additional guidance	Possible candidate responses
		At least two methods of obtaining relevant data from use of equipment.	Measure weight of cube with spring balance. Hang cube on hook. Pull on other end. Measure how far cube has gone up.
			OR
			Put cube on hook. Put spring balance on ring. Pull and read force. Measure how far spring balance moves.
Level 3	5-6	Additional guidance	Possible candidate responses
		At least two methods of obtaining relevant data from correct use of equipment and at least two descriptions of processing that data.	Use spring balance to measure weight of cube and force needed by student. Measure height that cube was raised by. Calculate work done by multiplying force and distance moved in each case.

Total 11 marks