Please check the examination details below before entering your candidate information		
Candidate surname	ow before effice	Other names
Centre Number Candidate Nu Pearson Edexcel Level		al 2 GCSE (Q_1)
Thursday 25th May		erz dest (9-1)
Morning (Time: 1 hour 45 minutes)	Paper reference	1PH0/1F
Physics		
PAPER 1		
		Foundation Tier
You must have: Calculator, ruler, Equation Booklet (en	closed)	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- A list of equations is included at the end of this exam paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

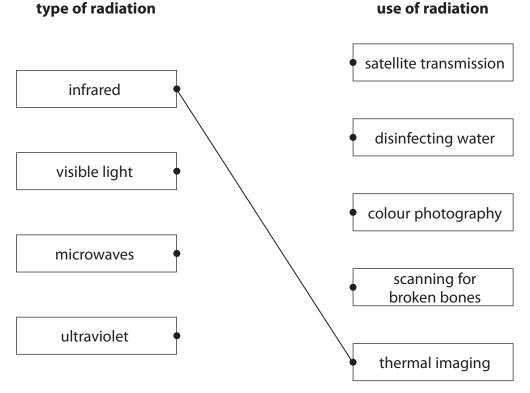
- 1 This question is about waves in the electromagnetic (e-m) spectrum.
 - (a) (i) Figure 1 shows some types of radiation that form part of the e-m spectrum and some uses of e-m radiation.

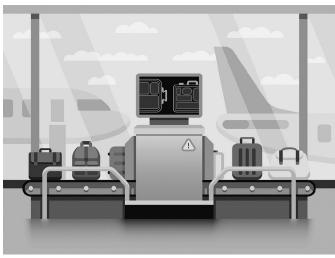
Draw **one** straight line from each type of e-m radiation to its use.

One line has been drawn for you.

.

(3)




Figure 1

- (ii) Which of these waves has the highest frequency?
 - A infrared
 - B microwaves
 - C ultraviolet
 - **D** visible light

(1)

(b) X-rays are also part of the e-m spectrum.

Figure 2 shows an airport security scanner using X-rays to scan passengers' bags.

(Source: © Net Vector/Shutterstock)

Figure 2

i) Explain why passengers are not scanned with X-rays.	(2)
i) Fundain who are a second and a second with V are a	
	(2)

2 (a) Figure 3 shows a ray of light striking a mirror.

The angle of incidence is 30° and the ray of light is reflected.

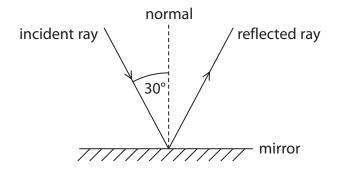


Figure 3

The angle of reflection is the angle between

(1)

- A the mirror and the incident ray
- **B** the mirror and the normal
- C the reflected ray and the incident ray
- **D** the reflected ray and the normal
- (b) Figure 4 shows two lenses, P and Q, arranged to form a simple telescope.

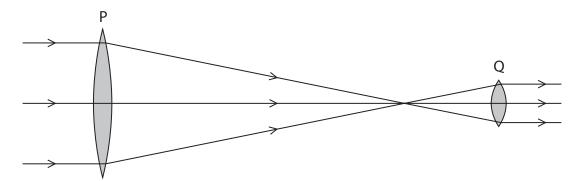


Figure 4

(i) State **one** use for a telescope.

(1)

(1)

- ☑ A P is converging, Q is diverging
- **B** P is diverging, Q is converging
- C P and Q are both converging
- D P and Q are both diverging

(iii) The focal length of lens Q is 0.14 m.

Calculate the power of the lens.

(2)

Use the equation

$$power = \frac{1}{focal length in m}$$

power of lens = dioptre

(c) A student is in a laboratory that has windows.

The student is given a converging lens, and a sheet of paper.

Describe how the student can produce an image of the window frame on the sheet of paper.

(2)

(Total for Question 2 = 7 marks)

3 (a) The graph in Figure 5 shows how the velocity of a car changes with time.

The car starts from rest and travels along a level, straight road for 50 s.

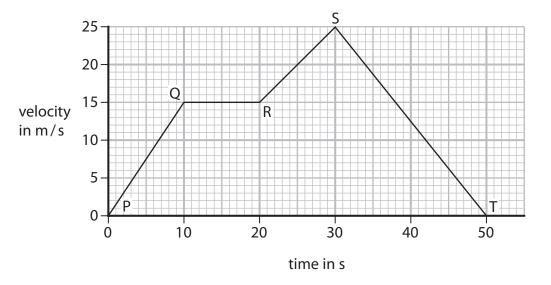


Figure 5

(i) Which part of the graph shows when the car has constant velocity?

(1)

- A PQ
- B QR
- D ST

(ii) Which part of the graph shows when the car has the greatest acceleration?

(1)

- A PQ
- B QR
- ST

(iii)	Calculate the accelerat	ion of the car in	the first 10 s sh	nown on the graph.
-------	-------------------------	-------------------	-------------------	--------------------

(2)

Use the equation

$$acceleration = \frac{change in velocity}{time}$$

acceleration = m/s^2

(iv) Calculate the distance the car travels in part QR shown on the velocity/time graph in Figure 5.

(3)

(b) A different car has a mass of 1200 kg.

Calculate the force needed to give this car an acceleration of 2.4 m/s².

(2)

Use the equation

$$F = m \times a$$

(Total for Question 3 = 9 marks)

4 An atom has a central nucleus containing neutrons and protons.

Electrons orbit the nucleus.

(a) (i) Which row of the table gives the relative mass and charge of a proton?

(1)

		relative mass	charge
×	A	0	+1
X	В	0	-1
X	C	1	+1
X	D	1	-1

(ii) An atom has a radius of 1.0×10^{-10} m.

A nucleus has a radius of 1.0×10^{-15} m.

Calculate the ratio of the radius of the atom to the radius of the nucleus.

(2)

ratio of radius of atom to radius of nucleus =

(iii) Explain why an atom has no charge overall.

(2)

(b) One isotope of carbon is carbon-14.

(i) State the number of protons in one atom of carbon-14.

(1)

number of protons =

(ii) State the number of neutrons in one atom of carbon-14.

(1)

number of neutrons =

(iii) Figure 6 shows a graph for the decay of the radioactive isotope carbon-14.

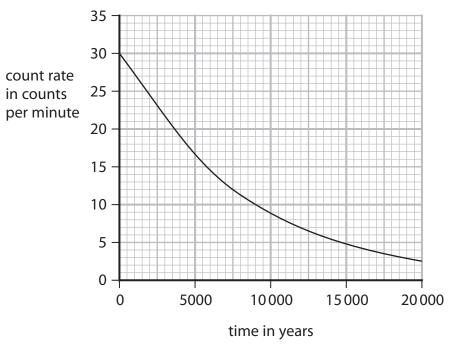


Figure 6

Use the graph to estimate the half-life of carbon-14.

(2)

half-life =years

(Total for Question 4 = 9 marks)

BLANK PAGE

5 (a) Figure 7 shows a wave on the surface of water.

direction of travel of wave ————

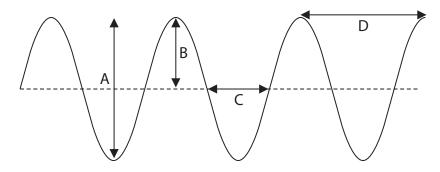


Figure 7

(i) Which of the arrowed lines shows the amplitude of the wave?

(1)

- × A
- X B

- (ii) Explain why the wave shown in Figure 7 is a transverse wave.

(2)

(2)

(b) Figure 8 shows a ripple tank.

A screen is placed below the ripple tank.

The wave pattern produced by the ripples can be seen on the screen.

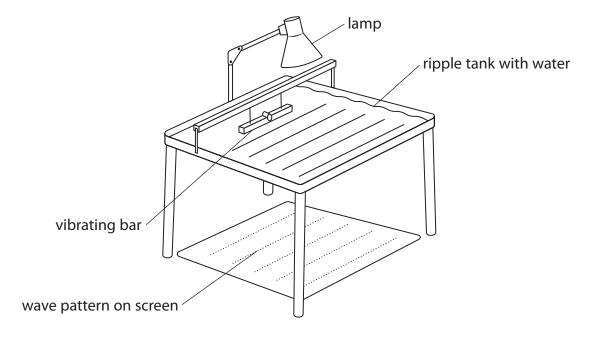


Figure 8

A student has a stop clock and a ruler.

(i)	Describe how the student	could measure	the frequency	of the ripples

(ii) Describe how the student could measure the wavelength of the ripples. (2)

(c) In a swimming pool, a wave is produced with a wavelength of $4.0\,\mathrm{m}$ and a velocity of $0.8\,\mathrm{m/s}$.

Calculate the frequency of the wave.

State the unit of frequency.

(3)

Use the equation

$$v = f \times \lambda$$

frequency of wave unit unit

(Total for Question 5 = 10 marks)

6 (a) Figure 9 shows a metal cube filled with hot water.

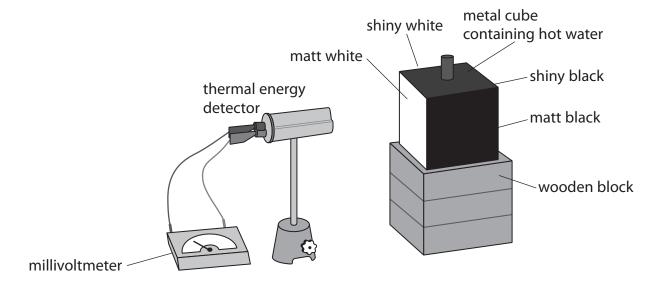


Figure 9

Four sides of the cube have different surfaces, as shown in Figure 9.

The four surfaces are at the same temperature.

The thermal energy radiated by each side of the box is measured using a thermal energy detector connected to a millivoltmeter.

The detector is moved to get a reading of the thermal energy emitted from each side of the box.

Figure 10 shows the table of results.

type of surface	millivoltmeter reading in mV
matt white	32
shiny white	20
shiny black	
matt black	55

Figure 10

(i) Suggest a possible millivoltmeter reading for the shiny black surface.

 mV

(1)

P 7 2 5 7 2 A 0 1 4 3 2

(ii) State what must be kept the same to take the measurement for each surface.

(1)

(iii) Suggest why the cube is placed on a block of wood.

(1)

(b) A hot surface emits radiation of different wavelengths.

The graph in Figure 11 shows how the intensity of the radiation emitted changes with the wavelength.

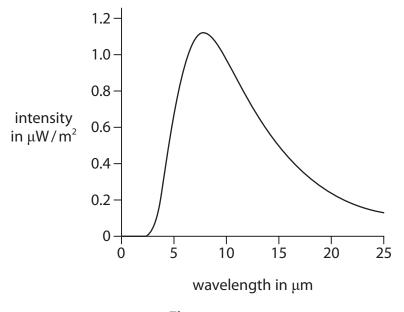


Figure 11

Describe how intensity changes with wavelength in Figure 11.

(2)

(4)

(c) Figure 12 shows two cans, a radiant heater and some other apparatus.

The cans absorb thermal radiation from the heater.

One can has a matt black surface and the other can has a shiny silver surface.

Both cans contain water at the same temperature.

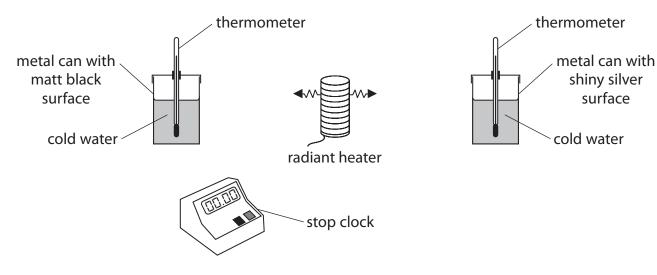


Figure 12

Describe how a student could use the apparatus in Figure 12 to determine which
can is the better absorber of thermal radiation.

(Total for Question 6 = 9 marks)

- 7 This question is about radioactivity and its uses.
 - (a) Which of these radiations does **not** have a charge?

(1)

- **A** alpha
- **B** beta minus
- C beta plus
- **D** gamma
- (b) Which of these radiations is used in smoke detectors?

(1)

- A alpha
- **B** beta minus
- C beta plus
- **D** gamma
- (c) The diagram in Figure 13 shows a radioactive source used to check the thickness of paper.

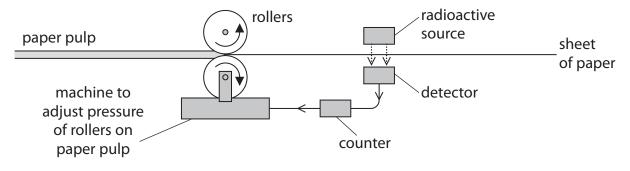


Figure 13

(i) Name the type of radiation used to check the thickness of the paper.

(1)

(ii) Give the name of **one** device which could detect this type of radiation.

(1)

When the paper is the correct thickness, the count rate is 4000 counts per minute.

(iii) The count rate increases when the paper gets thinner.

Give one reason for this increase.

(1)

(iv) The rollers need to be adjusted if the count rate increases by 5%.

Calculate the maximum count rate that would be allowed before the rollers need to be adjusted.

(2)

maximum count rate = counts per minute

Describe one way radioactivity can be used in the diagnosis of cancer and one way radioactivity can be used in the treatment of cancer.	(6)
(Total for Question 7 = 13 mar	ks)
	one way radioactivity can be used in the treatment of cancer.

(1)

8 (a) Which of these is a scalar quantity?

A acceleration

- B distance
- **C** force
- **D** weight
- (b) A student has some cupcake cases.

One cupcake case is shown in Figure 14.

(Source: © Anton Starikov/Shutterstock)

Figure 14

The student drops a stack of cupcake cases with the base facing downwards, as shown in Figure 15.

(Source: © Elena Schweitzer/Shutterstock)

Figure 15

The speed of the falling stack of cupcake cases depends on the number of cupcake cases in the stack.

(i) The student also has a stop clock and a metre rule.	
Describe an investigation to show how the speed of the falling stack of cupcake cases depends on the number of cupcake cases in the stack.	(4)
	(-1)
(ii) A stack of cupcake cases has a mass of 0.005 kg.	
Calculate the weight, in newtons, of the stack of cupcake cases.	
Gravitational field strength = $10 \mathrm{N/kg}$	(2)
Use the equation	
W = mg	
· · · · · · · · · · · · · · · · · · ·	
weight =	

Figure 16 shows a cupcake case that is falling at a constant velocity.

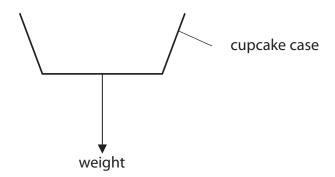


Figure 16

(iii) Draw an arrow on Figure 16 to show the force due to air resistance on the cupcake case.

(1)

(iv) State the value of the acceleration of the cupcake case when it is falling at a constant velocity

(1)

(c) A car travels along a straight road.

The car accelerates at 3 m/s^2 for a time of 7 s.

Calculate the change in velocity of the car.

Use the equation

change in velocity = acceleration \times time taken

(2)

change in velocity = m/s

(Total for Question 8 = 11 marks)

9 (a) Figure 17 shows a football kicked against a wall.

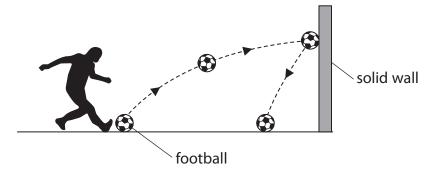


Figure 17

The football has a mass of 0.42 kg.

(i) The football gains 11 J of gravitational potential energy as it moves from the ground to the wall.

Calculate the height at which the ball hits the wall.

(3)

Gravitational field strength = 10 N/kg

Use the equation

$$\Delta GPE = m \times g \times \Delta h$$

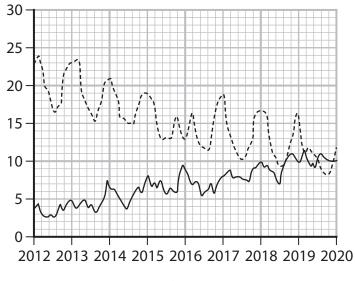
height = m

(ii) Calculate the kinetic energy of the football when it is moving at a velocity of $12 \,\mathrm{m/s}$.

(2)

Use the equation

$$KE = \frac{1}{2} \times m \times v^2$$


(iii) Describe the energy transfers that happen when the ball hits the wall.

(2)

*(b) In the UK, electricity is generated using non-renewable and renewable energy resources.

The graph in Figure 18 shows how the amount of electricity generated by these resources changed from 2012 to 2020.

electricity generated in terawatt hours

time in years from 2012 to 2020

Figure 18

Key

----- non-renewable energy resources

—— renewable energy resources

Explain how and why the amount of electricity generated by renewable and non-renewable energy resources has changed from 2012 to 2020.

Your answer should include

- the trends shown in Figure 18
- the change in the amount of electricity generated by at least one renewable resource
- the change in the amount of electricity generated by at least one non-renewable resource.

(Total for Question 9 = 13 marks)

(6)

BLANK PAGE

10 (a) Figure 19 shows two objects, **E** and **D**.

Figure 19

E emits a sound.

D detects the sound.

E is moving in the direction shown by the arrow, but **D** is not moving.

E emits a sound of wavelength 1.86 m.

D measures the wavelength of this sound as 1.98 m.

(i) Calculate the difference between the wavelength that **E** emits and the wavelength that **D** detects.

(1)

difference in wavelength = m

(ii) The velocity of sound is 330 m/s.

Calculate the velocity of **E**.

(2)

Use the equation

velocity of
$$\mathbf{E} = \frac{\text{velocity of sound} \times \text{difference in wavelength}}{\text{wavelength } \mathbf{E} \text{ emits}}$$

velocity of **E** = m/s

(b)	The wavelength of light emitted from distant galaxies is different when the light is
	detected on Earth.

Explain how this difference in wavelength shows that the Universe is expanding. (2)

(c) CMB radiation provides evidence that the Universe had a definite beginning.

Use the table in Figure 20 to give a typical value for the wavelength of CMB radiation.

type of radiation	typical wavelength
gamma rays	$1.0 \times 10^{-12} \mathrm{m}$
X-rays	$3.0 \times 10^{-11} \mathrm{m}$
ultraviolet	200 nm
visible	600 nm
infrared	4.0 μm
microwaves	1.0 mm
radio waves	50 m

Figure 20

(2)

wavelength =

- (d) During the evolution of a star, the nebula collapses and becomes a main sequence star.
 - (i) State what causes the nebula to collapse.

(1)

(ii) Explain why the nebula stops collapsing as i	t becomes a main sequence star. (3)
	(Total for Question 10 = 11 marks)

TOTAL FOR PAPER = 100 MARKS

Equations

 $(\text{final velocity})^2 - (\text{initial velocity})^2 = 2 \times \text{acceleration} \times \text{distance}$

$$v^2 - u^2 = 2 \times a \times x$$

energy transferred = current \times potential difference \times time

$$E = I \times V \times t$$

potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil

$$V_{\rm p} \times I_{\rm p} = V_{\rm s} \times I_{\rm s}$$

change in thermal energy = mass \times specific heat capacity \times change in temperature

$$\Delta Q = m \times c \times \Delta \theta$$

thermal energy for a change of state = $mass \times specific$ latent heat

$$Q = m \times L$$

$$P_1 V_1 = P_2 V_2$$

to calculate pressure or volume for gases of fixed mass at constant temperature

energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$

$$E = \frac{1}{2} \times k \times x^2$$

BLANK PAGE

BLANK PAGE

Pearson Edexcel Level 1/Level 2 GCSE (9-1)

May-June 2023 Assessment Window

Paper reference 1PH0/1F

Physics PAPER 1

Foundation Tier

Equation Booklet

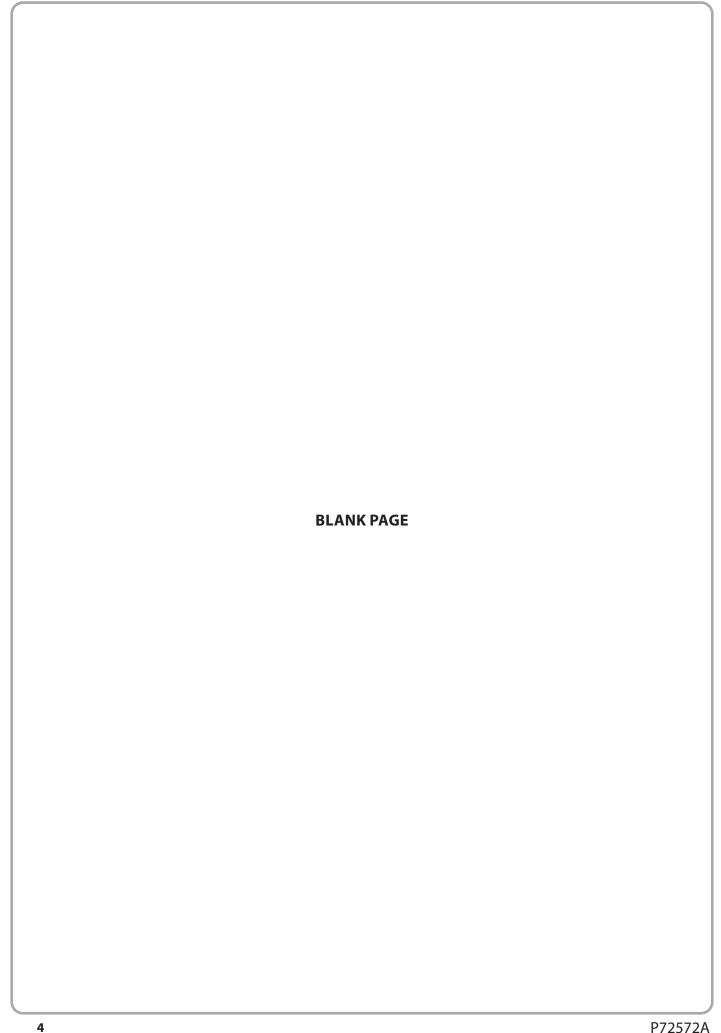
Do not return this Booklet with the question paper.

Turn over ▶

If you're taking **GCSE (9–1) Combined Science** or **GCSE (9–1) Physics**, you will need these equations:

HT = higher tier

	distance travelled = average speed \times time	
	acceleration = change in velocity ÷ time taken	$a = \frac{(v - u)}{t}$
	force = $mass \times acceleration$	$F = m \times a$
	weight = $mass \times gravitational$ field strength	$W = m \times g$
нт	momentum = mass × velocity	$p = m \times v$
	change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	$\Delta GPE = m \times g \times \Delta h$
	kinetic energy = $1/2 \times mass \times (speed)^2$	$KE = \frac{1}{2} \times m \times v^2$
	efficiency = $\frac{\text{(useful energy transferred by the device)}}{\text{(total energy supplied to the device)}}$	
	wave speed = frequency \times wavelength	$v = f \times \lambda$
	wave speed = distance ÷ time	$v = \frac{x}{t}$
	work done = force \times distance moved in the direction of the force	$E = F \times d$
	power = work done ÷ time taken	$P = \frac{E}{t}$
	energy transferred = charge moved \times potential difference	$E = Q \times V$
	$charge = current \times time$	$Q = I \times t$
	potential difference = current \times resistance	$V = I \times R$
	power = energy transferred ÷ time taken	$P = \frac{E}{t}$
	electrical power = current × potential difference	$P = I \times V$
	electrical power = $(current)^2 \times resistance$	$P = I^2 \times R$
	density = mass ÷ volume	$\rho = \frac{m}{V}$


2 P72572A

	force exerted on a spring = spring constant \times extension	$F = k \times x$
	(final velocity) ² – (initial velocity) ² = $2 \times acceleration \times distance$	$v^2 - u^2 = 2 \times a \times x$
нт	force = change in momentum ÷ time	$F = \frac{(mv - mu)}{t}$
	energy transferred = current \times potential difference \times time	$E = I \times V \times t$
нт	force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length	$F = B \times I \times l$
	For transformers with 100% efficiency, potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil	$V_{P} \times I_{P} = V_{S} \times I_{S}$
	change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = m \times c \times \Delta \theta$
	thermal energy for a change of state = mass \times specific latent heat	$Q = m \times L$
	energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E = \frac{1}{2} \times k \times x^2$

If you're taking **GCSE (9–1) Physics**, you also need these extra equations:

	moment of a force = force \times distance normal to the direction of the force	
	pressure = force normal to surface \div area of surface	$P = \frac{F}{A}$
нт	$\frac{potential\ difference\ across\ primary\ coil}{potential\ difference\ across\ secondary\ coil} = \frac{number\ of\ turns\ in\ primary\ coil}{number\ of\ turns\ in\ secondary\ coil}$	$\frac{V_{p}}{V_{S}} = \frac{N_{p}}{N_{S}}$
	to calculate pressure or volume for gases of fixed mass at constant temperature	$P_1 \times V_1 = P_2 \times V_2$
нт	pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength	$P = h \times \rho \times g$

END OF EQUATION LIST

P72572A

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In Physics (1PH0) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Publications Code 1PH0_1F_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word		
Strand	Element	Describe	Explain	
A01*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description		
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning	
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment		
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning	

^{*}there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Question	Answer	Addition	al Mark
Number		guidance	
1	type of radiation	use of radiation	(3)
(a) (i)	visible light microwaves ultraviolet	award on mark for each correct lir up to three marks colour photography reject for mark two lines starting of ending at the same box	ne ee a

Question Number	Answer	Mark
1 (a)(ii)	C ultraviolet A (infrared), B (microwaves) and D (visible light) all have frequencies below that of ultraviolet	(1) AO1

Question	Answer	Additional guidance	Mark
Number			
1	an explanation linking		(2)
(b)(i)			AO1
	(X-rays/they) pass through/penetrate (the bags/cases) (1)	accept see through	
	to see contents/to show objects of greater density (1)	accept look/see inside accept check contents/dangerous items	

Question Number	Answer	Additional guidance	Mark
1 (b)(ii)	an explanation linking		(2) AO2
	X-rays/they are ionising (1) cause cancer/mutations (of	accept harmful/dangerous accept a description of ionising accept high energy accept kill/damage cells	
	cause cancer/mutations (of cells/DNA) (1)	ionising accept high energy	

Total for question 1 = 8mark

Question	Answer	Mark
Number		
2	D the reflected ray and the normal	(1)
(a)		AO1
	A, B and C do not describe the angle of reflection	

Question Number	Answer	Additional guidance	Mark
2 (b)(i)	Any one from:- to view distant objects /things far away (1)	accept magnify distant objects	(1) AO2
	looking at planets /stars / space/ galaxies (1) bird watching (1)	accept other named astronomical objects	

Question	Answer	Mark
Number		
2	C P and Q are both converging	(1)
(b)(ii)		AO3
	A is incorrect the lens Q is not diverging	
	B is incorrect the lens P is not diverging	
	D is incorrect neither lens is diverging	

Question Number	Answer	Additional guidance	Mark
2 (b)(iii)	substitution (1) (power =) <u>1</u> 0.14		(2) AO2
	evaluation (1) 7.1 (D)	7.14(28) allow 7 award 1 mark for 7.1 to any other power of ten award 1 mark for correct answer as a fraction award full marks for the correct answer with no working	

Question Number	Answer	Additional guidance	Mark
2 (c)	a description including any two from window/light (from outside), lens and paper in correct order (1)	accept lens in front/behind window and paper in front/behind lens	(2) AO2
	move lens/paper (1) to focus (image) / to get a clear image (1)		

Total for question 2 = 7marks

Question Number	Answer	Mark
3 (a) (i)	B QR (horizontal line)	(1) AO3
	A PQ is incorrect it shows constant accelerationC RS is incorrect it shows constant accelerationD ST is incorrect it shows constant deceleration	

Question Number	Answer	Mark
3 (a)(ii)	 A PQ (steeper slope shows greater acceleration) B QR is incorrect it shows zero acceleration C RS is incorrect as slope is less steep than for PQ D ST is incorrect as the slope is less steep than for PQ and 	(1) AO3
	shows deceleration	

Question Number	Answer	Additional guidance	Mark
3	substitution (1)		(2)
(a)(iii)	(a=) <u>15(-0)</u>	15 seen	AO3
	10		
		Allow 10 divided by any number between 6 and 7 for this mark	
	evaluation (1)	award full marks for the	
	1.5 (m/s ²)	correct answer with no	
		working	

Question Number	Answer	Additional guidance	Mark
3 (a)(iv)	indication that distance travelled = area under graph (1)	may be seen on graph accept (distance=)speed x time ignore speed = <u>distance</u> time	(3) AO3
	substitution (1) (distance travelled =) 10 x 15		
	evaluation (1) 150 (m)	award full marks for the correct answer with no working	
		award 2 marks for 10 x 15 seen anywhere	
		if no other marks awarded, 1 mark for use of 15 (m/s) or 10 (s)	

Question Number	Answer	Additional guidance	Mark
3 (b)	substitution (1)		(2)
	(F=) 1200 x 2.4		AO2
	evaluation (1) 2900 (N)	accept 2880 (N)	
	, ,	, , ,	
		award one mark for power of	
		ten error	
		award full marks for the	
		correct answer with no	
		working	

Total for question 3 = 9marks

Question Number	Answe	er			Mark
4 a (i)		1	+1		(1) AO1
	B is inc	correct the pro	oton has a r	mass of 1 not 0 mass of 1 not 0 charge of +1 not -1	

Question Number	Answer	Additional guidance	Mark
4 a(ii)	substitution (1) ratio = $\frac{10^{-10}}{10^{-15}}$	10 ⁻¹⁰ : 10 ⁻¹⁵	(2) AO2
	evaluation (1) 10 ⁵	accept suitable equivalent ratios e.g. 1×10^5 : 1 $1:10^{-5}$ or 10^5 : 1 $1:0.00001$ or 100000 :1	
		allow 1 mark for inverted ratios e.g. $10^{-15}: 10^{-10}$ 0.00001:1 or 1:100000 award full marks for the correct answer with no working	

Question Number	Answer	Additional guidance	Mark
4 a(iii)	an explanation linking		(2) AO1
a(m)	same number / amount of (1)	equal number / amount of	
		allow balanced (number / amount of)	
	electrons and protons (1)	negative and positive charges ignore (neutral) neutrons	
		reject positive/negative neutrons for 2 nd marking point	

Question	Answer	Additional guidance	Mark
Number			
4	6 / six		(1)
(b)(i)			AO1

Question	Answer	Additional guidance	Mark
Number			
4	8 / eight		(1)
(b)ii			AO2

Question Number	Answer	Additional guidance	Mark
4 (b)(iii)	indication of horizontal line between 14 and 16 and / or vertical line between 5250 and 6250 (1) count rate in counts 25 per minute 20 15 10 10 10 10 15 10 10 20 000 time in years	accept alternative indications e.g. cross on curve accept any halving pairs e.g. going between 20 cpm and 10 cpm	(2) AO3
	value between 5250 (years) and 6250 (years) inclusive (1)	award full marks for the correct answer with no working	

Total for question 4 = 9 marks

Question	Answer	Mark
Number		
5	B the line shows the amplitude	(1)
(a)(i)		AO1
	A is incorrect the line shows twice the amplitude	
	C is incorrect the line shows half the wavelength	
	D is incorrect the line shows the wavelength	
	S	

Question Number	Answer	Additional guidance	Mark
5 (a)(ii)	an explanation linking vibration/oscillation (1)		(2) AO1
	perpendicular / at right angles / 90° (to the direction of travel of the wave/direction of energy transfer) (1)	accept up and down	

Question Number	Answer	Additional guidance	Mark
_	a description including count the number of waves/ripples (1) (that pass a point) in a certain time (1) OR measure the time for a certain number of waves/ripples (1) use of f = 1/T (1)	accept use of numerical values calculate the number of waves that pass the point in a second scores 2 marks	(2) AO1

Question Number	Answer	Additional guidance	Mark
5 (b)(ii)	a description including any two from		(2) AO1
	the waves/ripples are made to look stationary (1)	using camera, video, strobe light, stroboscope, mobile, phone, photo(graph)	
	measure the distance across a number of waves/wave fronts/ripples (1)	accept measure the distance across a number of lines	
	calculate the wavelength from the measurements (1)	divide distance by the number of waves/ripples	
		accept the idea of measuring the distance between one wave/ripple/line and another (successive) wave/ripple/line for 2	
		marks	

Question Number	Answer	Additional guidance	Mark
5 (c)	substitution (1) 0.8 =f x 4.0	(f =) <u>0.8</u> 4.0	(3) AO2
		allow correct substitution into seen incorrect rearrangement	
	rearrangement and evaluation (1) 0.2 (Hz)	award 2 marks for the correct answer with no working	
	unit (1) Hz / s ⁻¹ / per sec	accept hz or hertz independent mark accept recognisable spelling	

Total for question 5 = 10marks

	Answer	Additional guidance	Mark
Question			
Number			
6	any value between 21 and 54		(1)
(a)(i)	inclusive		AO3

Question Number	Answer	Additional guidance	Mark
6 (a)(ii)	any one from		(1) AO3
(=)()	distance / separation (1)		
	time (exposure) (1)		

Question Number	Answer	Additional guidance	Mark
6 (a)(iii)	Any one from poor conductor / reduces energy loss / (good) insulator (1)	allow heat loss for energy loss accept wood stops heat loss accept it does not conduct heat	(1) AO3
	same height as detector (1)		

Question Number	Answer	Additional guidance	Mark
6 (b)	a description including any two from (at low wavelength) intensity increases (as wavelength increases) (1) after peak/at long wavelengths intensity decreases (as the wavelength increase)(1) intensity peaks between 7 and 10(µm) or between 1.0 and 1.2 (µW/m²) (1)	allow use of data from the graph to indicate the peak	(2) AO3

Question Number	Answer	Additional guidance	Mark
6 (c)			(4)
	a description including any four	allow testing each can	AO1
	from one method	separately (two experiments)	
	Using temperature change method:		
	any one control (1)	same distance from heater same volume/mass of water allow same volume/surface area of cans lids on both cans	
	start the stopclock and switch on the heater (at the same time) (1)	start the stopclock and measure initial temperature (at the same time)	
	measure over a certain time (1)	(at the same time)	
	measure final temperature of each (1)		
	largest temperature		
	difference/rise gives better absorbing surface (1)	Accept 'highest temperature is better'	
	Using time change method:		
	any one control (1)		
	any one control (1)	same distance from heater same volume/mass of water allow same volume/surface area of cans lids on both cans	
	switch on the heater and start the stopclock (at the same time) (1)		
	measure time taken (1)		
	to reach a certain temperature (1)		
	quickest time to reach a certain	accept 'fastest (to reach	
	temperature gives better absorbing surface (1)	temperature) is better'	

Total for Question 6 = 9 marks

	Answer	Mark
7 (a)	D gamma	(1) AO1
	A,B and C all carry a charge	

		Answer	Mark
7 (k	o)	A alpha	(1) AO1
		B,C, and D travel too far in air and are not sufficiently ionising	

	Answer	Additional guidance	Mark
7 (c)(i)	beta, beta (minus), β, β ⁻	accept beta(plus), β ⁺	(1) AO1

	Answer	Additional guidance	Mark
7 (c)(ii)	Geiger-Muller (tube)/ G-M (tube)/ GM (tube)/ Geiger (counter)	accept ratemeter do not accept radiation meter accept phonetic spellings e.g. Giga	(1) AO1

	Answer	Additional guidance	Mark
7 (c)(iii)	one from more (radiation) passes through (the paper) (1) OR less (radiation) is absorbed (by the paper) (1)	penetrates/gets through allow easier to pass through	(1) AO2
	OR less paper (for radiation) to pass through/penetrate(1)	Ignore name of particle if given	

	Answer	Additional guidance	Mark
7 c(iv)	Calculation of 5% of count rate (1)	accept use of any percentage between 4% and 5%	(2) AO2
	4000 x 5 or 4000 x 0.05		
	= 200	accept any value between 160 and 200	
	evaluation (1) 4000 +200 = 4200	ecf for addition of incorrect calculated percentage and 4000	
		award full marks for any answer that rounds to 4200 without working	

Question	Indicative content	Mark
number 7*(d)	Answers will be gradited asserting to condidately depleyment	(6)
7 · (u)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme.	(6) AO1
	The indicative content below is not prescriptive and candidates	
	are not required to include all the material which is indicated as	
	relevant. Additional content included in the response must be	
	scientific and relevant. AO1	
	Diagnosis	
	Tracers	
	radioactive sources	
	swallowed by or injected into patients	
	travel around the body	
	emit gamma radiation (from radioactive decay)	
	gamma radiation passes out through the body	
	detected outside the body with a gamma camera	
	PET Scanner	
	(more of) the tracer goes to the cancer cells	
	gamma radiation is emitted	
	(gamma rays) from/in different directions	
	gamma detected by gamma cameras	
	(3D) pictures produced on a computer screen	
	Named tracer, e.g. technetium, iodine, fluorine	
	Treatment	
	Radiotherapy	
	Use of gamma rays/x-rays	
	kills cancer (cells)	
	radiating small area of body (with gamma rays/X rays)	
	radiation used for a short time	
	(gamma rays) from/in different directions	
	brachytherapy radioactive sources	
	inside the body	
	may not be removed	
	put close to cancerous tumour	
	pat close to carreer out tarriour	
	Ignore references to chemotherapy	

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1)
		 Presents a description with some structure and coherence. (AO1)
Level 2	3-4	 Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1)
		 Presents a description that has a structure which is mostly clear, coherent and logical. (AO1)
Level 3	5-6	Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1)
		 Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance – the decision within levels
			e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1–2	Additional guidance	Possible candidate responses
		isolated facts about cancer diagnosis or cancer treatment using radioactivity OR	Uses/emits gamma (rays) can kill cancer(ous) cells radiotherapy
		limited description about cancer diagnosis or limited description about cancer treatment using radioactivity OR	Cancer is treated using gamma rays
		allow isolated facts about cancer diagnosis using x-rays, C(A)T scans, MRI, ultrasound for level 1 if no other mark scored	CT scan is used to find tumours
Level 2	3–4	Additional guidance	Possible candidate responses
		limited description about cancer diagnosis and limited description about cancer treatment using	PET scans are used in diagnosis and radiotherapy is used to treat cancer
		radioactivity OR detailed description of either cancer diagnosis or treatment using radioactivity	OR Cancer is treated using gamma rays, the gamma rays kill the cancer cells
Level 3	5–6	Additional guidance	Possible candidate responses
		detailed description about either diagnosis OR cancer treatment using radioactivity AND	Tracers are used in diagnosis and radiotherapy uses gamma rays to kill cells. OR
		limited description about either cancer treatment OR diagnosis using radioactivity	Tracers emit gamma rays which pass out through the body and radiotherapy uses x-rays

Question Number	Answer	Additional guidance	Mark
8 (a)	A,C , and D are incorrect as these are vector quantities		(1) AO1

Question number	Answer	Additional guidance	Mark
8 (b)(i)	A description to include any 4 from:		(4) AO1
	measure height (1)	allow 'keep same height' allow in this context hold against (fixed point on) metre rule	
	measure time of fall (1)	allow 'time it'	
	use (average) speed=distance ÷ time (1)		
	repeat with different number of cupcake cases in the stack/more cupcake cases (1)	accept cupcakes for cupcake cases	
	repeat and average time (of fall for each stack of cupcake cases) (1)		
	plot a graph (speed of fall against number of cupcake cases dropped) (1)		

Question Number	Answer	Additional guidance	Mark
8 (b)(ii)	substitution (1) (W=)0.005 x 10		(2) AO2
	evaluation (1) 0.05 (N)	5 x 10 ⁻² (N) do not allow power of ten error	
		award full marks for the correct answer with no working	
		give full credit for use of g=9.8 or 9.81 N/kg	

Question number	Answer	Additional guidance	Mark
8 (b)(iii)	air resistance cupcake case weight air resistance arrow (1)	judge by eye any vertical upward arrow outside or inside the cupcake case ignore length of arrow arrow need not touch cupcake holder ignore label on arrow	(1) AO2

Question number	Answer	Additional guidance	Mark
8 (b) (iv)	zero / there is none / 0 / it has no acceleration	ignore 'constant'	(1) AO2
		ignore units	

Question	Answer	Additional	Mark
number		guidance	
8(c)	substitution (1)		(2)
	(change in velocity=) 3 x 7		AO2
	evaluation (1)	award full marks	
	21 (m/s)	for the correct	
		answer with no	
		working	

Total for question 8 = 11marks

Question number	Answer	Additional guidance	Mark
9 (a)(i)	substitution (1) $11 = 0.42 \times 10 \times \Delta h$ rearrangement (1) $(\Delta h =)$ $\frac{11}{0.42 \times 10}$	accept substitution and rearrangement in either order ($\Delta h =$) ΔGPE m x g	(3) AO2
	evaluation (1) 2.6 (m)	accept any value which rounds to 2.6 (m) award 2 marks for 2.6 to any other power of 10 allow 1 mark for 0.38 allow 1 mark for 46(.2) award full marks for the correct answer with no working give full credit for use of g=9.8 or 9.81 N/kg (gives 2.7 (m))	

Question	Answer	Additional guidance	Mark
number			
9	substitution(1)		(2)
(a)(ii)	$(KE=)^{\frac{1}{2}} \times 0.42 \times 12^{2}$		AO2
	evaluation (1)		
	30(J)	allow 30.2(4) (J)	
		award 1 mark for 30 240 (J)	
		award 1 mark for 2.52(J)	
		award 1 mark for 60.5(J)	
		9,	
		award full marks for the correct	
		answer with no working	

Question number	Answer	Additional guidance	Mark
9 (a)(iii)	A description including: KE/kinetic (energy store) (1) (transfers to) and one of:	allow mechanically / mechanical transfer	(2) AO2
	elastic (potential energy store) (1) OR	ignore reference to gravitational potential energy	
	thermal (energy of ball/wall/surroundings) (1) OR	allow heat for thermal allow sound in this context	
	dissipates (to surroundings) (1)	ignore reference to the ground	

Question	Indicative content	Mark
number		
9*(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO2,AO3 Non-renewable sources of energy trend: less used/decrease in use (between 2012 and 2019) fossil fuels coal, gas, oil are running out / finite resource / sustainability argument produce carbon dioxide/ sulphur dioxide/ greenhouse gases (when burned) in power stations cause pollution/ smoke particles /damage to the environment causes climate change / global warming production of greenhouse gases needs to be	(6) AO2, AO3
	reduced (for Britain to become carbon neutral)	
	nuclear fuels	
	no carbon dioxide produced	
	radioactive waste produced	
	safety concerns	
	Renewable sources of energy	
	trend: more used /increase in use	
	(between 2012 and 2019) renewable and non-renewable about equally	
	used from 2019	
	solar, wind, hydroelectric, tidal, geothermal, wave	
	and biomass	
	never run out / are sustainable	
	do not produce carbon dioxide/ greenhouse	
	gases (except biomass)	
	slow down climate change / global warming	

Level	Mark	Descriptor	
	0	No awardable content	
Level 1	1-2	 Interpretation and evaluation of the information attempted but will be limited with a focus on mainly just one variable. Demonstrates limited synthesis of understanding. (AO3) 	
		 The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2) 	
Level 2	3-4	 Interpretation and evaluation of the information on both variables, synthesising mostly relevant understanding. (AO3) 	
		 The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2) 	
Level 3	5-6	 Interpretation and evaluation of the information, demonstrating throughout the skills of synthesising relevant understanding. (AO3) 	
		 The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2) 	

Level	Mark 0	Additional Guidance No rewardable material.	General additional guidance – the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
Level 1	1-2	Additional guidance isolated facts about the resources, non-renewable or renewable OR the trend(s) in usage	Possible candidate responses coal is non-renewable and solar is renewable non-renewables are decreasing and renewables are increasing non-renewable resources are higher on (most of) the graph
Level 2	3-4	Additional guidance trend(s) AND limited explanation of the renewable trend OR limited explanation of the non-renewable trend	Possible candidate responses use of renewable resources is increasing because renewables are sustainable OR use of non-renewable resources are decreasing because they cause global warming
Level 3	5-6	Additional guidance both trends AND detailed explanation of one trend AND some explanation of the other trend	Possible candidate responses use of renewable resources are increasing and the use of non-renewable resources are decreasing because non-renewable resources_are running out and wind turbines do not produce carbon dioxide

	Answer	Additional guidance	Mark
10 (a)(i)	(1.98-1.86) = (+/-) 0.12		(1) AO2

	Answer	Additional guidance	Mark
10(a)(ii)	(velocity =) <u>330 x 0.12</u> (1) 1.86	ecf from 10ai	(2) AO2
	(+/-) 21.3 (m/s) (1)	accept numbers that round to 21 (m/s)	
		award 1,2 marks for (i) and (ii) for the correct answer for (ii) even without working	

	Answer	Additional guidance	Mark
10(b)	(there is) an increase in wavelength (of light) (1)	allow wavelength stretches allow red shift ignore shift to red end of spectrum	(2) AO1
	shows <u>galaxies</u> are moving away (from Earth) (1)	ignore objects / stars / planets	

	Answer	Additional guidance	Mark
10(c)	1(.0) (1)	Allow values between 1.0 and 1.9	(2) AO3
	mm (1)		
		allow <u>1x10⁻³ m</u> or <u>0.001 m</u> for 2 marks	
		if nothing in answer line, credit answer indicated in table	

	Answer	Additional guidance	Mark
10 d(i)	gravitational attraction / gravitational force (causing collapse) (1)	allow gravity ignore weight ignore gpe ignore gravitational energy	(1) AO1

	Answer	Additional guidance	Mark
10 d(ii)	An explanation linking:		(3) AO1
	(gravity causing) increase in temperature (1)	allow increase in pressure/density	
	(until hot enough for) fusion (1)	hydrogen to form helium allow nuclear reactions ignore fission	
	(until) balance (between gravity and fusion/thermal) (1)	allow equilibrium / counteracts	

Total for Question 10 = 11 marks.