Please check the examination details bel	ow before ente	ring your candidate information
Candidate surname		Other names
Centre Number Candidate No		
Pearson Edexcel Level	l 1/Lev	el 2 GCSE (9–1)
Tuesday 13 June 20	23	
Morning (Time: 1 hour 45 minutes)	Paper reference	1CH0/2F
Chemistry		
PAPER 2		
		Foundation Tier
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- There is a periodic table on the back cover of the paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 Figure 1 shows the structure of a molecule of each of four compounds, A, B, C and D.

compound A	compound B	compound C	compound D
нОн	O=C=0	H S H	H H—C—H H

Figure 1

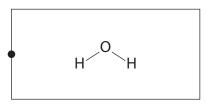
(a) The formula of a molecule of compound **A** is H₂O.

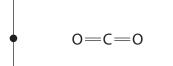
Give the formula of a molecule of compound **D**.

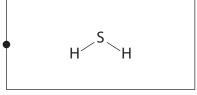
(1)

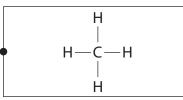
(b) The names of two of the compounds in Figure 1 are shown below.

Draw one straight line from each name to the structure of a molecule of that compound.

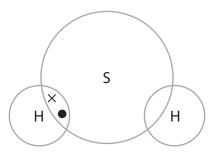

(2)


name of compound


carbon dioxide


methane

structure of molecule


(c) Figure 2 shows information about the number of electrons in the outer shell of each of the different atoms in a molecule of compound **C**.

symbol of element	number of electrons in outer shell of the atom
Н	1
S	6

Figure 2

Use the information in Figure 2 to complete the dot and cross diagram for a molecule of compound **C**.

(2)

(d) The atomic number of phosphorus, P, is 15.

One atom of phosphorus has a relative atomic mass of 31.

Give the number of protons, neutrons and electrons in this atom of phosphorus.

(3)

number of protons =

number of neutrons =

number of electrons =

(Total for Question 1 = 8 marks)

2 A student investigated the temperature change that took place when different salts were dissolved in water.

The student used the following method.

- **step 1** pour 50 cm³ of water into a polystyrene cup and record the temperature of the water
- step 2 find the mass of an empty boiling tube
- **step 3** add 2 spatula measures of a salt to the boiling tube and find its new mass
- **step 4** add the salt to the water
- **step 5** stir the mixture and record the temperature after 2 minutes.

Figure 3 shows the apparatus used.

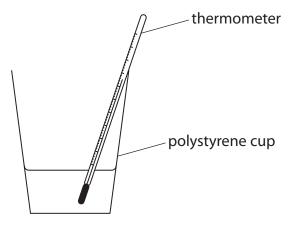


Figure 3

(a) For steps 2 and 3, the student obtained the mass measurements shown in Figure 4 for the first salt.

mass of empty boiling tube in g	22.52
mass of boiling tube + 2 spatula measures of a salt in g	24.16

Figure 4

Use the mass measurements in Figure 4 to calculate the mass of salt, in grams, added to the water.

mass of salt = g

(b) The student repeated the method for three different salts, **A**, **B** and **C**.

The same mass of each salt was used.

Figure 5 shows the temperature readings obtained for the three different salts.

salt	starting temperature of the water in °C	temperature of the mixture after 2 minutes in °C	temperature change in °C
Α	20.5	25.6	+5.1
В	20.5	19.8	-0.7
С	20.5	29.2	

Figure 5

(i) Calculate the temperature change for salt **C**.

Include a sign to show if the temperature change is an increase or a decrease.

(2)

temperature change =°C

(ii) Explain which salt produces the biggest exothermic change.

(2)

(c) Explain why a polystyrene cup is a better container to use for this investigation than a glass beaker.

(2)

(Total for Question 2 = 7 marks)

- 3 Chemical tests are used to identify unknown substances.
 - (a) A flame test can be used to identify metal ions in a substance.
 - (i) Complete step 2 of how to carry out a flame test.

(2)

step 1 dip a flame test wire in dilute hydrochloric acid and then hold the wire in a roaring Bunsen flame until the flame is colourless

step 2

step 3 hold the wire with the substance in a roaring Bunsen burner flame.

(ii) Many metal ions produce a coloured flame in a flame test.

Draw one straight line from each metal ion to its flame colour in a flame test.

(3)

metal ion

flame colour

copper ion

potassium ion

sodium ion

blue-green

lilac

orange-red

red

yellow

(b) Some metal ions can be identified using sodium hydroxide solution

Drops of sodium hydroxide solution were added to a solution containing iron(III) ions, Fe^{3+} .

What would be seen?

(1)

- A blue solution
- B green liquid
- C red-brown precipitate
- **D** yellow gas
- (c) In the test for carbonate ions, dilute hydrochloric acid is added to the solid carbonate in a test tube.

A gas is given off.

(i) Give the name of this gas.

(1)

(ii) Figure 6 shows the apparatus that a student set up to test for this gas.

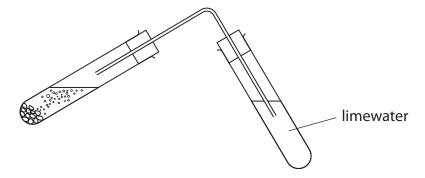


Figure 6

This apparatus will not work.

State what change is needed so that bubbles of the gas can pass through the limewater.

(d) A compound that contained ammonium ions was dissolved in water.

A solution was formed.

Sodium hydroxide solution was added, and the mixture was heated.

A gas was given off.

This gas was tested with a piece of damp red litmus paper.

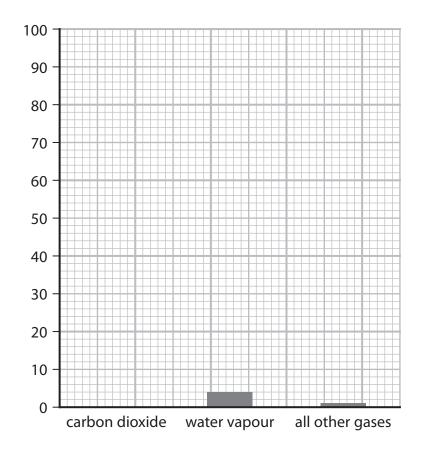
The litmus paper turned blue.

Name the gas that was given off.

(1)

(Total for Question 3 = 9 marks)

BLANK PAGE


4 A scientist produced the information in Figure 7 about the Earth's atmosphere and the Earth's average surface temperature.

Earth's atmosphere 3 billio	n years ago	Earth's atmosphere	today
gas	%	gas	%
carbon dioxide	95	nitrogen	78.00
water vapour	4	oxygen	21.00
all other gases	1	carbon dioxide	0.04
		all other gases including water vapour	0.96
average surface temperature 3 billion years ago		average surface temp today	perature
above 400°C		20°C	

Figure 7

(a) Complete the bar chart showing the composition of the Earth's atmosphere 3 billion years ago by adding a bar to show the percentage of carbon dioxide.

	ha	as decreased	has increased	has stayed the sam	e
	Over th	ne past 3 billion y	ears the average surface	temperature of the Earth	
		rth's atmosphere vapour than today	3 billion years ago contai y's atmosphere.	ined much more	
	Explain	n what happened	to the water vapour.		(2)
			rease in percentage of ca e growth of primitive plar	arbon dioxide was partly o	due
to t	this gas Carbor	being used in the		nts.	due
to t	this gas Carbor produc Give th	being used in the n dioxide was used ted oxygen. ne name of the pro	e growth of primitive plar	nts. ive plants and	due
to t	this gas Carbor produc Give th	being used in the n dioxide was used ted oxygen.	e growth of primitive plar	nts. ive plants and	due (1)
to t	Carbor produc Give th produc	being used in the dioxide was used ted oxygen. The name of the process oxygen.	e growth of primitive plar	nts. ive plants and in carbon dioxide and	(1)
to t (i)	Carbor produce Give the produce Which	being used in the dioxide was used ed oxygen. The name of the process oxygen. of the following to	e growth of primitive plar d in the growth of primiti ocess in plants that takes	ive plants and in carbon dioxide and as is oxygen?	
to t (i)	Carbor produce Give the produce Which	being used in the dioxide was used ed oxygen. The name of the process oxygen. of the following to put a lighted sp	e growth of primitive pland in the growth of primition occess in plants that takes	ive plants and in carbon dioxide and as is oxygen? urns with a pop	(1)
to t (i)	Carbor produce Give the produce Which	being used in the dioxide was used end oxygen. The name of the process oxygen. The following to put a lighted spout a glowing spout a glowin	e growth of primitive pland in the growth of primition occess in plants that takes ests would show that a guilling into the gas and it bu	ive plants and in carbon dioxide and as is oxygen? urns with a pop	(1)

- (d) Many people are concerned by the increasing amount of carbon dioxide in the atmosphere.
 - (i) The amount of carbon dioxide in the atmosphere is measured in parts per million (ppm).

Figure 8 shows the amount of carbon dioxide in the atmosphere in June 2001 and in June 2021.

	amount of carbon dioxide in ppm
June 2001	371.17
June 2021	416.56

Figure 8

Calculate the increase in the amount of carbon dioxide, in ppm, from June 2001 to June 2021.

		_			_
Civia vialir	ancurarto	+ 4 ~	nooroct	م ام طرید	, niimhar
Give voui	answer to	une	nearest	WHOLE	: Hullibel.

increase in amount of carbon dioxide = ______ ppm

(ii) State **one** possible effect that could be caused by the increasing amount of carbon dioxide in the atmosphere.

(1)

(Total for Question 4 = 9 marks)

BLANK PAGE

5 Ethanol can be made by fermentation of a solution of glucose, a carbohydrate.

A student used the apparatus shown in Figure 9 for the fermentation reaction.

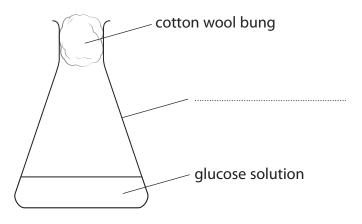


Figure 9

(a) Complete the missing label on Figure 9.

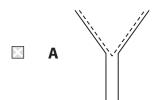
(1)

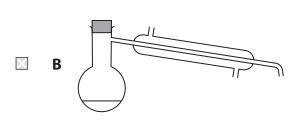
(b) The student dissolved 45 g of glucose in water to make 150 cm³ of glucose solution.

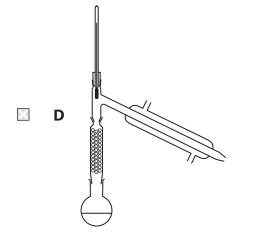
Calculate the concentration of this solution in g dm⁻³.

(2)

concentration of glucose solution = g dm⁻³


(c) State what should be added to the glucose solution to cause the fermentation reaction.


(d) After a few days, a dilute solution of ethanol is formed.


Which piece of apparatus should be used to produce a concentrated solution of ethanol from the dilute solution of ethanol by fractional distillation?

(1)

dilute solution of ethanol

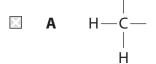
(e) The complete fermentation of 180 g of glucose produces 92 g of ethanol.

Calculate the maximum mass of ethanol, in g, produced from the complete fermentation of 45 g of glucose.

(2)

maximum mass of ethanol = _____g

(f) The structure of a molecule of ethanol is shown in Figure 10.


Figure 10


Ethanol is an example of an alcohol.

Η

What is the functional group of an alcohol?

(1)

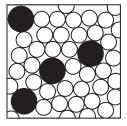
(g) Ethanol can be oxidised to form ethanoic acid.

State what is seen when a piece of universal indicator paper is placed in some dilute ethanoic acid.

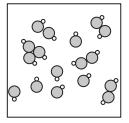
(1)

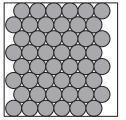
(Total for Question 5 = 9 marks)

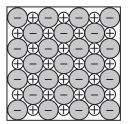
6	Chlorine is an element in group 7 of the periodic table. (a) What name is given to group 7 of the periodic table? A alkali metals B halogens C noble gases	(1)
	 D transition metals (b) Chlorine reacts with sodium to form sodium chloride. (i) Write the word equation for this reaction. 	(2)
	(ii) Chlorine, Cl ₂ , is made of simple molecules. Describe what is meant by the term molecule .	(2)
	(iii) Sodium, like all metals, conducts electricity. Explain how sodium conducts electricity.	(2)
	(iv) Sodium chloride contains sodium ions, Na ⁺ , and chloride ions, Cl [−] . Use this information to state the formula of sodium chloride.	(1)



(v) Sodium chloride is made of a giant structure of ions.


Which diagram shows the arrangement of particles in sodium chloride?




C

× B

⊠ D

(vi) Sodium chloride solution conducts electricity.

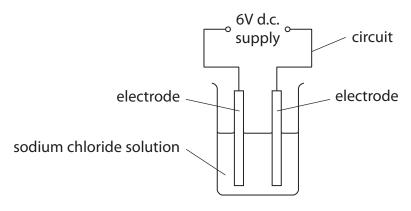


Figure 11

State what can be put into the circuit in Figure 11 to show that a current is flowing.

(c) Figure 12 shows a flow diagram of how hydrochloric acid can be made.

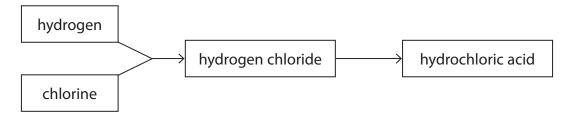


Figure 12

(i) Balance the equation for the reaction between hydrogen and chlorine to form hydrogen chloride.

(1)

$$H_2 + Cl_2 \rightarrow \dots HCl$$

(ii) State how hydrogen chloride can be converted into hydrochloric acid.

(1)

(Total for Question 6 = 12 marks)

- 7 In the complete combustion of alkanes, the alkane reacts with oxygen to produce carbon dioxide and water only.
 - (a) Pentane, C₅H₁₂, is an alkane.

The equation for the complete combustion of pentane, C₅H₁₂, can be shown as

$$C_5H_{12} \ + \ 8O_2 \ \rightarrow \ \textbf{w}CO_2 \ + \ 6H_2O$$

(i) What is the value of \mathbf{w} needed to balance the equation for the reaction?

(1)

- **B** 5

- (ii) What happens to pentane in this reaction?

- A pentane is cracked
- **B** pentane is distilled
- C pentane is oxidised
- D pentane is reduced

- (b) Figure 13 shows some information about four alkanes.
 - (i) Complete Figure 13 to show the structure of one molecule of propane and the formula of butane.

(2)

alkane	formula	structure of one molecule
propane	C ₃ H ₈	
butane		H H H H
pentane	C₅H ₁₂	H H H H
hexane	C ₆ H ₁₄	H H H H H

Figure 13

(ii) Using the information in Figure 13, give the empirical formula of hexane.

*(iii) A student is asked to compare the amount of energy released during the combustion of two alkanes, hexane and octane.

The student is given the apparatus shown in Figure 14.

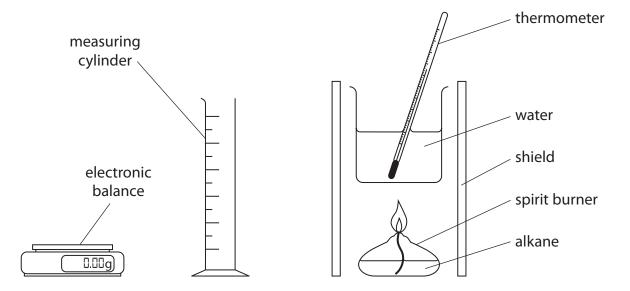


Figure 14

Using the apparatus shown, devise a plan for the student to compare the masses of hexane and octane required to raise the temperature of water by 30°C, describing how any variables in the experiment can be controlled to make a fair comparison.

8 A student used the apparatus shown in Figure 15 to investigate the reaction between marble chips and dilute hydrochloric acid.

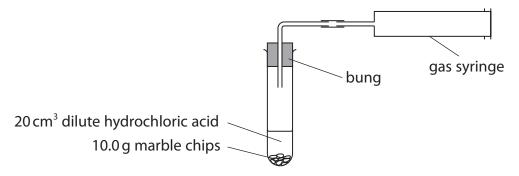
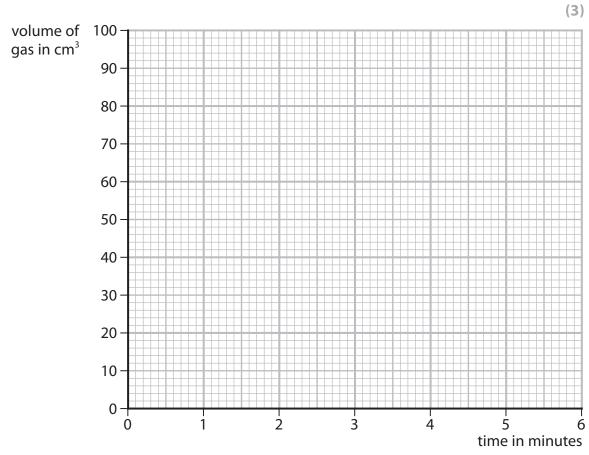


Figure 15


The student recorded the volume of gas every minute as shown in Figure 16.

time in minutes	0	1	2	3	4	5	6
volume of gas in cm ³	0	52	78	91	97	100	100

Figure 16

(a) On the grid, plot the results shown in Figure 16.

Draw a curve of best fit.

(b) Rate of reaction can be calculated using

$$rate of reaction = \frac{volume of gas produced in 1 minute}{1 minute}$$

Figure 17 shows the rates of reaction calculated from the results of this experiment.

The rate of reaction for the time interval 2 to 3 minutes is missing.

time interval	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5
	minute	minutes	minutes	minutes	minutes
rate of reaction in cm³ min ⁻¹	52	26		6	3

Figure 17

(i) Calculate the rate of reaction for the time interval 2 to 3 minutes.

(1)

rate of reaction =
$$\dots$$
 cm³ min⁻¹

(ii) State and explain what happens to the rate of reaction as the acid reacts with the marble chips in this experiment.

(3)

(c) The student repeated the experiment using the same volume of acid and the same mass of marble chips but used smaller marble chips.

All other conditions remained the same.

The student found that the reaction with the smaller marble chips was faster to start with but produced the same volume of gas.

Using this information, draw a line on the grid to show the results for the reaction with the smaller marble chips.

Label this line 'C'.

(2)

(d) Which of the following changes would make the reaction faster?

(1)

- A use a larger boiling tube
- **B** use a larger volume of the dilute acid
- □ use a more concentrated acid
- **D** use a smaller boiling tube
- (e) State what could be used to measure time in the investigation.

(1)

(Total for Question 8 = 11 marks)

X

X

X

X

9 Figure 18 shows some information about some group 1 metals.

group 1 metal	atomic number	relative atomic mass
lithium	3	7
sodium	11	23
potassium	19	39
rubidium	37	85
caesium	55	133

Figure 18

(a)	Explain, in terms of their electronic configurations, why these metals are placed in
	group 1 of the periodic table.

(2)

(b) Which row shows two correct properties of group 1 metals?

	properties of g	group 1 metals
Α	compounds are white in colour	high density
В	low melting points	compounds are blue in colour
C	soft enough to be cut by a knife	low melting points
D	high density	conduct electricity

(c) The word equation for the reaction of potassium with bromine is

potassium + bromine → potassium bromide

Add the missing state symbol and balance the equation for this reaction.

(2)

.....K(.....K(....
$$\mathsf{K}\mathsf{Br}(\mathsf{g}) \to \mathsf{KBr}(\mathsf{s})$$

(d) A sample of potassium contains three isotopes, potassium-39, potassium-40 and potassium-41.

Explain the meaning of the term **isotopes**.

(2)

(e)e .eae g. ee g. ee	*(e)	The reactivity of the group	1 m	netals i	increases	from	lithium t	0	caesium.
-----------------------	------	-----------------------------	-----	----------	-----------	------	-----------	---	----------

Often, teachers demonstrate the reactions of lithium, sodium and potassium with water.

These reactions can be used to predict the behaviour and reactions of rubidium and caesium with water.

Describe the reactions of each of the group 1 metals with water including the predicted behaviour and reactions of rubidium and caesium.

You may use word equations in your answer.

(6)

10 (a) Atoms, molecules, nanoparticles and protons are types of particle.

List these four types of particle in order of size from smallest to largest.

(2)

(b) Nanoparticles have a large surface area to volume ratio.

Figure 19 shows a cube-shaped nanoparticle with sides of 90 nm.

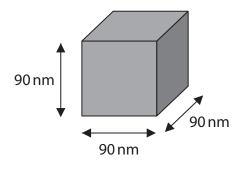


Figure 19

(i) What is 90 nm in metres?

(1)

- **A** 9.0×10^{-5}
- **B** 9.0×10^{-6}
- \bigcirc **C** 9.0 × 10⁻⁸
- \square **D** 9.0 × 10⁻¹¹
- (ii) Calculate the simplest surface area to volume ratio for the nanoparticle in Figure 19.

Show your working.

(3)

surface area to volume ratio = 1:

(c) Figure 20 shows the structure of a molecule of tetrafluoroethene.

Figure 20

(i) Tetrafluoroethene can form the polymer poly(tetrafluoroethene).

Draw a diagram to show the structure of the repeating unit of this polymer.

(2)

(ii) Poly(tetrafluoroethene) is also known as Teflon™.

State one use of poly(tetrafluoroethene) and explain how one of its properties makes it suitable for that use.

(3)

use

explanation

(Total for Question 10 = 11 marks)

TOTAL FOR PAPER = 100 MARKS

The periodic table of the elements

0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Krypton 36	131 Xe xenon 54	[222] Rn radon 86
7		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
9		16 O	32 S sulfur 16	79 Selenium 34	128 Te tellurium 52	[209] Po polonium 84
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn th	207 Pb lead 82
က		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81
	'			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
				59 nickel 28	106 Pd palladium 46	195 Pt platinum 78
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77
	1 Hydrogen 1				Ru ruthenium 44	190 Os osmium 76
'				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75
		mass ɔol umber		52 Cr	96 Mo molybdenum 42	184 W tungsten 74
	relative atomic mass atomic symbol atomic (proton) number			51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73
		relativ atc atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72
				45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56
~		7 Li lithium 3	23 Na sodium 11	39 potassium 19	85 Rb rubidium 37	133 Cs caesium 55

^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In Chemistry (1CH0) Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Publications Code 1CH0_2F_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word			
Strand	Element	Describe	Explain		
A01*		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required		
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)		
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description			
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning		
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment			
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning		

^{*}there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Paper 2F Foundation Tier

Question number	Answer	Additional guidance	Mark
1(a)	CH ₄	allow H ₄ C / C ₁ H ₄	(1) AO3-1
		reject CH4 / H4C / CH4 / Ch4 / ch4	AGS I

Question number	Answer		Additional guidance	Mark
1(b)	name of compound	structure of molecule		(2)
		н	do not award mark if more than one line join a left hand box with those on the right	AO1-1
	carbon dioxide	O=C=0		
	methane	HSH		
		H H—C—H 		
	one mark for each line			

Question number	Answer	Additional guidance	Mark
1(c)		allow all dots or all crosses or a mixture of both	(2) AO2-1
	S H	allow remaining electrons not shown as pairs	
	shared pair (1) rest of molecule correct (1)	MP2 depends on MP1	

Question number	Answer	Additional guidance	Mark
1(d)	protons - 15 (1) neutrons - 16 (1) electrons - 15 (1)	accept ONLY whole numbers $ \begin{tabular}{ll} if no marks scored then maximum 1 mark for \\ number of electrons = number of protons \\ OR \\ p+n=31 \end{tabular} $	(3) AO1-1

Total for Question 1 = 8 marks

Question number	Answer	Mark
2(a)	24.16 - 22.52 = 1.64 (g)	(1) AO2-2

Question number	Answer	Additional guidance	Mark
2(b)(i)	+ (1) 8.7 (1) (°C) sign (1)	Allow answer to be shown on the table	(2) AO2-2
	value (1)	mark independently	

Question number	Answer	Additional guidance	Mark
2(b)(ii)	 An explanation linking salt with larger positive temperature rise in part (i) (1) 	allow ecf from Q02b(i) +8.7 °C in part(i) gives salt C in Q02b(ii)	(2) A02-1
	 shows the {largest/highest} temperature rise (1) 	MP2 depends on MP1 allow gives out most heat / loses most energy /heats up the most / biggest temperature change	
		ignore just quoting numbers ignore biggest exothermic change / because it's getting hotter	
		reject B for both marking points	

Question number	Answer	Additional guidance	Mark
2(c)	 An explanation linking polystyrene is an insulator / poor conductor (of heat) (1) reduces {heat/energy} {loss/transfer} (1) 	allow RA for glass allow polystyrene has a higher specific heat capacity than glass allow (polystyrene) {keeps heat in / doesn't absorb heat} allow holds {warmth/heat} better (than glass) ignore temperature stays in the cup ignore loss of heat through the top	(2) AO3-3

Total for Question 2 = 7 marks

Question number	Answer	Additional guidance	Mark
3(a)(i)	{dip/put} flame test wire into dilute hydrochloric acid, (1)	allow dip wire into water	(2) AO1-2
	then into {substance / ion} (1)	mark independently ignore metal in place of substance ignore use of spatula	
		OR make solution of substance (1) dip {wire / splint} into solution (1)	

Question number	Answer		Additional guidance	Mark
number 3(a)(ii)	copper ion potassium ion	flame colour blue-green lilac orange-red	do not award mark if more than one line join a left hand box with those on the right	(3) A01-1
	one mark for each line	yellow		

Question number	Answer		Mark
3(b)	C red-brown precipitate	is the only correct answer.	(1) AO1-2
	$\boldsymbol{A},\boldsymbol{B}$ and \boldsymbol{D} are incorrect results for	this test	

Question number	Answer	Additional guidance	Mark
3(c)(i)	carbon dioxide	allow CO ₂ do not accept CO ²	(1) AO1-2

Question number	Answer	Additional guidance	Mark
3(c)(ii)	{remove / loosen / slacken} {bung / stopper/lid} of right-hand test tube	allow any change that allows gas to bubble through the limewater	(1) AO3-3

Question number	Answer	Additional guidance	Mark
3(d)	ammonia	allow NH ₃ / NH3 reject ammon ium / NH ³	(1) AO1-2

Total for Question 3 = 9 marks

Question number	Answer	Additional guidance	Mark
4(a)	bar on bar chart for carbon dioxide to 95 %	allow ±½ small square	(1) AO2-1
		ignore width of bar	7.5.4.

Question number	Answer	Additional guidance	Mark
4(b)(i)	over the past 3 billion years the average surface temperature of the Earth has decreased.		(1) AO2-1

Question number	Answer	Additional guidance	Mark
4(b)(ii)	an explanation linking any two from		(2) AO2-1
	 {the Earth / atmosphere / water vapour} cooled (1) water vapour condensed / formed clouds (1) {(liquid) water / rain} formed (1) 	allow surface temperature has decreased	
	• produced {oceans / seas / rivers / bodies of water} (1)	allow lakes	

Question number	Answer	Mark
4(c)(i)	photosynthesis	(1) AO1-1

Question number	Answer	Mark
4(c)(ii)	B put a glowing splint into the gas and it relights	(1) AO1-2
	A, C and D are incorrect tests for oxygen	AUI Z

Question number	Answer	Additional guidance	Mark
4(d)(i)	(416.56 - 371.17 =) 45.39 (1)	answer of 45 alone with or without working scores (2)	(2) AO2-1
	= 45 (1) (to nearest whole number)	1 mark for correct rounding (has to use only the numbers 416.56 and 371.17 in any calculation)	

Question number	Answer	Additional guidance	Mark
4(d)(ii)	eg global warming / {ice caps/glaciers} melting / changing habitats / rising sea levels	allow {enhanced/increased} greenhouse effect / increased global temperatures / climate change /	(1) AO1-1
		allow effects of climate change eg more extreme weather	
		allow more photosynthesis	
		ignore references to pollution / less oxygen in the air reject references to ozone layer / deforestation / acid rain	

Total for Question 4 = 9 marks

Question number	Answer	Additional guidance	Mark
5(a)(i)	(conical) flask	ignore volumetric flask	(1) AO2-2

Question number	Answer	Additional guidance	Mark
5(b)		answer of 300 (g dm ⁻³) alone scores (2)	(2) AO2-1
	$\frac{45}{150} = 0.3 (1)$	allow ecf from MP1 on both methods	
	$0.3 \times 1000 (1) = 300 (g dm^{-3})$	$\frac{150}{45} = 3.333(0)$	
	OR $\frac{150}{1000} = 0.15 \text{ (dm}^3\text{) (1)}$ $\frac{45}{0.15} = 300 \text{ (g dm}^{-3}\text{) (1)}$	3.333 x 1000 = 3333 (1)	

Question number	Answer	Additional guidance	Mark
5(c)	yeast / zymase	allow enzyme / biological catalyst	(1) AO2-2

Question number	Answer	Mark
5(d)	is the only correct answer A is filtration B is simple distillation, C is evaporation / crystallisation	(1) AO1-1

Question number	Answer	Additional guidance	Mark
5(e)	$ \frac{92}{180} = 0.5111111 (1) $ $ 180 $ $ 0.51111111 \times 45 = 23 (g) (1) $ OR $ \frac{180}{92} = 1.956 (1) $ $ \frac{45}{1.956} = 23 (1) $ OR $ \frac{180}{45} = 4 (1) $ $ \frac{45}{92} = 23 (1) $ OR $ \frac{45}{4} = 0.25 (1) $ $ \frac{45}{180} = 0.25 (1) $ OR $ \frac{45}{180} = 23 (1) $ OR $ 92 \times 45 = 4140 (1) $ $ \frac{4140}{180} = 23 (1) $	answer of 23 (g) alone scores (2) allow any number of sig figs on step 1 except 1 for any method calculation, allow ecf from MP1 to MP2	(2) AO2-1

Question number	Answer	Mark
5(f)	D -O-H is the only correct answer	(1) AO1-1
	A, B and C are not correct functional groups of an alcohol	

Question number	Answer	Additional guidance	Mark
5(g)	turns {orange /red / yellow}	allow combinations of red, orange & yellow ignore 'changes colour'	(1) AO2-2

Total for Question 5 = 9 marks

Question number	Answer	Mark
6(a)	B halogens	(1) AO1-1
	A, C and D are names for other groups in the periodic table	

Question number	Answer	Additional guidance	Mark
6(b)(i)	Left side: sodium + chlorine (1)	reactants in either order reject chlor ide on left hand side	(2) AO2-1
	Right side: sodium chloride (1)	reject sodium chlor ine on right hand side reject if other substances on right side	
		use of formulae to produce a correctly balanced equation: $2Na + Cl_2 \rightarrow 2NaCl$ (2)	

Question number	Answer	Additional guidance	Mark
6(b)(ii)	A description to include		(2) AO1-1
	• (two or more) atoms joined together (1)	allow made up of more than one atom / group of atoms ignore 'compound atoms'	
	• by a {covalent bond / shared pair of electrons} (1)	MP2 depends on MP1 allow {(chemically) bonded / chemically joined} together reject references to ionic bonding for MP2	
		if no other mark scored, allow 'particles joined by a {covalent bond / shared pair of electrons} (1)	

Question number	Answer	Additional guidance	Mark
6(b)(iii)	An explanation linking • electrons (1)	reject ions	(2) AO2-1
	 (electrons) {can move / are delocalised / can pass through / can flow} (1) 	MP2 depends on MP1 allow charged particles can move / are delocalised (1)	
		ignore 'free' alone allow free-moving electrons / delocalised electrons / free flowing electrons (2)	

Question number	Answer	Additional guidance	Mark
6(b)(iv)	NaCl / Na ⁺ Cl ⁻	allow CINa ignore upper case A, upper case L, lower case n ignore numbers in front of formula reject Na ⁺ + Cl ⁻ as final answer / Na ⁻ Cl ⁺	(1) AO3-1

Question number	Answer	Mark
6(b)(v)	is the only correct answer A, B and C represent different structure types	(1) AO2-1

Question number	Answer	Additional guidance	Mark
6(b)(vi)	ammeter / (light) bulb / lamp	allow buzzer / multimeter allow correct symbol (on diagram) ignore voltmeter / data logger (alone) ignore 'add arrows'	(2) AO3-3

Question number	Answer	Additional guidance	Mark
6(c)(i)	$H_2 + Cl_2 \rightarrow 2 HCl$	allow multiples	(1) AO2-1

Question number	Answer	Additional guidance	Mark
6(c)(ii)	{dissolve in / add} water	allow {make aqueous / dissolve into a solution} allow bubble through water / mix with water	(1) AO1-1
		ignore dilute / make it a liquid	
		reject other substances	

Total for Question 6 = 12 marks

Question number	Answer	Mark
7(a)(i)	B 5	(1) AO2-1
	A, C and D are not correct because the equation would not balance	

Question number	Answer	Mark
7(a)(ii)	C pentane is oxidised	(1) AO1-1
	A, B and D are not correct as these are different processes	

Question number	Answer	Additional guidance	Mark
7(b)(i)	H H H	allow lower case h allow non-linear structures	(2) AO1-1
	C ₄ H ₁₀ (1)	allow non subscript numbers reject C ⁴ H ¹⁰	

Question number	Answer	Additional guidance	Mark
7(b)(ii)	C_3H_7 (1)	allow non subscript numbers <u>but</u> reject C ³ H ⁷	(1) AO3-1
		ignore 2 in front of correct empirical formula	

Question number	Indicative content	Mark
	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO2-2 (3 marks) and AO3-3a (3 marks) plan (alkanes used could be in either order) • measure known volume of water • put into beaker • put hexane into burner	(6) AO2-2 AO3-3
	 find mass of burner + hexane record temperature of water light the burner under the beaker of water put draft shield around apparatus stir water with thermometer heat water until temperature has risen by 30 °C extinguish flame find new mass of burner + hexane replace with same volume of cold water repeat experiment with octane in burner variables controlled same volume of water being heated same height of water above flame same temperature rise recorded shield prevents drafts same sized wick 	

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	• The plan attempts to link and apply knowledge and understanding of scientific enquiry, techniques and procedures, flawed or simplistic connections made between elements in the context of the question. (AO2)
		• Analyses the scientific information but understanding and connections are flawed. An incomplete plan that provides limited synthesis of understanding. (AO3)
Level 2	3-4	• The plan is mostly supported through linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, some logical connections made between elements in the context of the question. (AO2)
		• Analyses the scientific information and provides some logical connections between scientific enquiry, techniques and procedures. A partially completed plan that synthesises mostly relevant understanding, but not entirely coherently. (AO3)
Level 3	5-6	• The plan is supported throughout by linkage and application of knowledge and understanding of scientific enquiry, techniques and procedures, logical connections made between elements in the context of the question. (AO2)
		• Analyses the scientific information and provide logical connections between scientific concepts throughout. A well-developed plan that synthesises relevant understanding coherently. (AO3)

Mark	Descriptor	Additional Guidance
0	No rewardable material.	Read whole answer and ignore all incorrect material / discard any contradictory material then:
1-2	Additional Guidance	Possible candidate response (all examples, not a definitive list)
	One relevant instruction (1)	put hexane (or alkane) into burner (1)
	One variable to be controlled (1)	same volume of water (being heated) (1)
	Two relevant instructions (but not linked in sequence) (2) Two or more variables to be controlled (2) (just a list variables limits answer to level 1)	 measure known volume of water AND light the burner (2) same volume of water being heated AND same temperature rise (2)
3–4	Additional Guidance	Possible candidate response (all examples, not a definitive list)
	At least three relevant instructions (but not linked) (3)	measure known volume of water, find mass of burner + hexane, extinguish flame (3)
	Two relevant instructions that are linked in sequence (3)	• put hexane into spirit burner , find mass of burner + hexane (3)
	At least three relevant instructions (but not linked) AND a	measure known volume of water, find mass of burner + hexane, extinguish flower was some values of water for both allowers (4)
	· ·	flame; use same volume of water for both alkanes (4) measure known volume of water, put into beaker, record temperature, alkane
	Tripare method (1)	into burner, find mass, light the burner, heat the water (4)
5–6	Additional Guidance	Possible candidate response
	Basic method that would work, but lacks detail AND repeated with other alkane AND at least one variable to	measure known volume of water, put into beaker, record temperature, alkane into burner, find mass, light the burner, heat the water, after temp rise find
	be controlled	new mass of burner + alkane, repeat with other alkane. Keep same volume of water being heated (5)
	Method described that has details about apparatus AND repeated with other alkane AND at least one variable to be controlled	• measure 100 cm ³ of water, put into beaker, record temperature, hexane into burner, find mass of burner + hexane, light the burner, heat the water, after temp rise of 30°C, extinguish flame, find new mass of burner + hexane, repeat with octane. Keep same volume of water being heated, same temp rise (6)
	3-4	1–2 Additional Guidance One relevant instruction (1) One variable to be controlled (1) Two relevant instructions (but not linked in sequence) (2) Two or more variables to be controlled (2) (just a list variables limits answer to level 1) 3–4 Additional Guidance At least three relevant instructions (but not linked) (3) Two relevant instructions that are linked in sequence (3) At least three relevant instructions (but not linked) AND a relevant variable to be controlled (4) A part method (4) 5–6 Additional Guidance Basic method that would work, but lacks detail AND repeated with other alkane AND at least one variable to be controlled Method described that has details about apparatus AND repeated with other alkane AND at least one variable to

Question number	Answer	Additional guidance	Mark
8(a)	6 or 7 points plotted correctly (2) or 4 or 5 points plotted correctly (1)	allow +/- half a square.	(3) AO2-1
	best fit curve starting at (0,0) (1)	for MP3, curve must be a single smooth curved line going through most or all of THEIR plotted points (ecf allowed), or if the points are not visible, through most or all of the correct values.	
		reject curves going above or below 100cm³ by more than half a square.	
		reject straight line / dot to dot straight lines	
		bar charts – max 2 marks for plotting points if time value is clear	

Question number	Answer	Additional guidance	Mark
8(b)(i)	13	answer may be given in table	(1) AO2-1

Question number	Answer	Additional guidance	Mark
8(b)(ii)	An explanation linking	Note: a comparison of the rate of marble chips with that of marble powder is ignored ignore anything about rate increasing at the beginning / starts fast	(3) AO3-2
	rate of reaction decreases / reaction is slower (1)	allow (rate of) reaction slows down ignore references to volumes of gas produced ignore reaction stops	
	 as {reactants /acid/ marble chips} are used up (1) so less frequent collisions (1) 	allow {concentration/amount} of acid decreases / marble chips getting smaller allow {marble chips have / acid has} reacted allow less {reactants/ marble chips/ acid} available ignore limiting factor/ reaction is ending	
		allow fewer (successful) collisions ignore less particles have less energy	

Question number	Answer	Additional guidance	Mark
8(c)	graph to show	there must be a line from part (a) to award these marks. if lines are not labelled, make a reasonable assumption about which is C.	(2) AO3-2
	initial line steeper and to the left (1)	mark independently. line should start from start of original line	
	• line levelling off at 100 cm³ before 5 minutes (1)	all levelling off within half a square of original line	

Question number	Answer	Mark
8(d)	C use a more concentrated acid is the only correct answer	(1) AO1-2
	A, B and D will have no effect on the speed of reaction	

Question number	Answer	Additional guidance	Mark
8(e)	stopwatch / clock	allow timer / time app on phone	(1) AO1-2

Total for Question 8 = 11 marks

Question number	Answer	Additional guidance	Mark
9(a)	An explanation linking • 1 electron (1) • in outer shell(s) (1)	allow 1 is the last number of the electronic configuration (1) ignore electronic configurations written out reject incorrect number of electrons MP2 depends on MP1 for outer allow {highest energy / last} for shell allow ring, energy level, orbital	(2) AO1-1
		allow: 1 outer electron (2) 1 valence electron (2) have to lose 1 electron to get full outer shell (2) same number of electrons in outer shell (1) forms a +1 ion by losing one electron (1)	

Question number	Answer	Mark
9(b)	C soft enough to be cut by a knife / low melting point is the only correct answer A and D are incorrect because alkali metals do not have a high density	(1) AO1-1
	B is incorrect because alkali metal compounds are not blue in colour	

Question number	Answer	Additional Guidance	Mark
9(c)	$2 \text{ K(s)} + \text{Br}_2(g) \rightarrow 2 \text{ KBr(s)}$	allow multiples	(2) AO2-1
	balancing (1) state symbol s (1)	ignore 'two' ignore 'solid'	

Question number	Answer	Additional guidance	Mark
9(d)	An explanation linking	reject compound / molecule / ion / elements once	(2) AO1-1
	 (atoms) {of same element / with same number of protons} / all contain 19 protons / same atomic number (1) 	allow same protons ignore electrons	
		reject different protons	
	 different number of neutrons / different mass number / have 20, 21, 22 neutrons (1) 	allow different / extra / more / fewer neutrons ignore different mass / relative atomic mass	
		reject different electrons	

Questio n	Indicative content	Mark
number		
9(e)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. Iithium, sodium, potassium float on water metals move around on the water bubbles form / fizz / effervescence hydrogen / gas produced metal hydroxide solution formed metal + water → metal hydroxide + hydrogen purple solution formed if universal indicator present in the water lithium slowly disappears sodium forms a ball / melts sodium disappears quickly potassium burns with a lilac flame potassium disappears very quickly rubidium much more reactive (than potassium) rubidium burns with coloured flame caesium explosive / more reactive than rubidium	(6) AO1-1

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	• Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail.
		The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question.
Level 2	3-4	Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed.
		The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question.
Level 3	5-6	Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed.
		The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question.

Level	Mark	Descriptor	Additional Guidance
	0	No rewardable material.	Read whole answer and ignore all incorrect material/ discard any contradictory
			material then:
Level 1	1-2	Additional Guidance	Possible candidate response
		Correctly describes the trend in reactivity of group 1 metals	potassium is more reactive than sodium (1)
		down the group.	the metals get more reactive down the group (1)
		Gives at least 1 observation for reaction of one alkali metal	water with universal indicator turns purple when lithium is added (1)
		and water.	when potassium is added to water it moves on the surface with a lilac flame (2)
		Identifies at least 1 product formed when alkali metals react	when lithium is added to water, bubbles of hydrogen are formed (2)
		with water.	sodium makes sodium hydroxide (1)
		Writes at least one correct word equation	sodium + water → sodium hydroxide + hydrogen (2)
Level 2	3–4	Additional Guidance	Possible candidate response
		Compares reactions of at least 2 alkali metals including at	lithium and sodium both float on the water (3)
		least 1 observation.	lithium is the least reactive because it moves less than the others, with fewer bubbles (4)
		Compares at least 2 alkali metals including identifying at least 1 product of reaction with water.	lithium is less reactive than sodium because it produces fewer bubbles of hydrogen (4)
			sodium makes sodium hydroxide, potassium makes potassium hydroxide (3)
		Gives at least 1 observation about reaction of alkali metals	potassium burns with a flame, caesium would explode (3)
		and makes prediction for Rb / Cs.	rubidium would give off more bubbles than potassium, and would move faster in the water (4)
Level 3	5–6	Additional Guidance	Possible candidate response
		Compares reactions of at least 3 alkali metals including at	potassium is more reactive than sodium, which is more reactive than lithium.
		least 2 observations for at least one metal AND identifies at	When added to water they move around the surface and then disappear, with
		least one product of reaction with water.	lithium moving the slowest. The metals react to form metal hydroxides and
			hydrogen (6)
		Compares at least 3 alkali metals, including predictions for	
		Cs / Rb AND identifies at least one product of reaction with	sodium + water → sodium hydroxide + hydrogen
		water.	potassium + water → potassium hydroxide + hydrogen
			rubidium + water \rightarrow rubidium hydroxide + hydrogen (5)

Question number	Answer	Additional guidance	Mark
10(a)	proton atom molecule nanoparticle in the correct order (2)	allow proton molecule atom nanoparticle (1)	(2) AO1-1

Question number	Answer	Mark
10(b)(i)	\mathbf{C} 9.0 x 10 ⁻⁸ is the only correct answer	(1) AO2-1
	A is incorrect as it is 90000 nanometres	
	B is incorrect as it is 9000 nanometres	
	D is incorrect as it is 0.09 nanometres	

Question number	Answer	Additional guidance	Mark
10(b)(ii)	surface area = $90 \times 90 \times 6 (1) = 48 600$	correct answer of 1:15 without working 3 marks	(3) AO3-2
	volume = $90 \times 90 \times 90 (1) = 729 000$	- H	
	720,000 45 (1)	allow ecf	
	$\frac{729\ 000}{48\ 600} = 15\ (1)$	<u>surface area calculated</u> correctly evaluated (1) volume calculated	
	answer = 1 : 15		
		ratio 1:90 scores 2	
		<u>48600</u> = 0.066 (2) 729000	
		$\frac{729000}{8100} = 90 (2)$	
		$\frac{8100}{729000} = 0.011 (1)$	

Question number	Answer	Additional guidance	Mark
10(c)(i)	F F	allow lowercase f allow diagram to show 1, 2, 4 or 6 carbon atoms eg F -C- F 2 marks ignore brackets around repeat unit and n	(2) AO2-1

Question number	Answer	Additional guidance	Mark
10(c)(ii)	Use (1) Property (1) Reason (1) (Property & reason MUST depend on use) Examples: • for coating (frying) pans (1) • because it is {slippery/non stick} (1) • food will not stick to the (frying) pan (1) OR • clothing /carpets (1) • because it is non-stick (1) • easy to clean / will not stain (1) OR • bottom of skis (1) • because it is slippery (1) • less friction on snow (1)	USES allow: pans / frying pans / saucepans / tennis rackets / named kitchen equipment / piping / skis ignore: sports equipment (in general) / 'kitchenware' / windows / window ledge / toothpaste PROPERTIES allow: slippery / smooth / non-stick / unreactive / does not conduct electricity / non-toxic / high melting point ignore: strong / lightweight / high boiling point Other reasonable uses include: lubricants - reduces friction graft material in surgery - inert/non-reactive prevent insects from climbing surfaces - slippery insulation of wiring & electrical circuits - does not conduct electricity/high melting point plumbers' tape - flexible/waterproof bottles - inert/non-reactive raincoat / rainjacket - waterproof Goretex clothing - waterproof Umbrella - water repellant flame retardant material (2) - high melting point hair straighteners - non-stick/no hair damage Allow any reasonable use	(3) AO1-1