2 (a) A teacher prepares some equipment to demonstrate electromagnetism. Figure 2 shows the equipment.

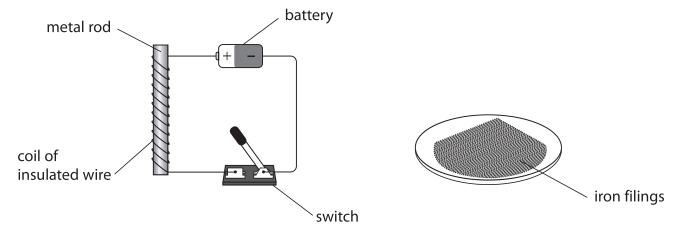


Figure 2

The teacher wants to show that iron filings

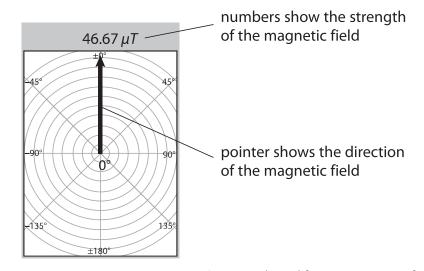
- are picked up by the metal rod when the switch is closed
- fall off the metal rod when the switch is opened again.
- (i) Suggest a suitable metal for the rod.

(1)

(ii) Give **two** reasons for your choice.

(2)

2	 	



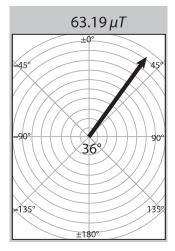
(b) A student's mobile phone has an app to measure a magnetic field.

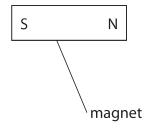
The student places the phone on a table and rotates the phone until it is pointing north.

There are no magnets near to the phone.

Figure 3 shows the display on the screen of the phone.

(Source: adapted from MGS Lite app for iPhone)


Figure 3


(i) State why the strength of the magnetic field shown is not zero.

(1)

The student places a magnet near to the phone on the table.

Figure 4 shows the magnet and the new display on the screen.

(Source: adapted from MGS Lite app for iPhone)

Figure 4

(ii) State **two** changes in the magnetic field measured by the phone from Figure 3 to Figure 4.

(2)

2																																										
_	••••	 	••••	••••	 	 • • • • •	• • • • •	••••	••••	 ••••	••••	• • • • •	••••	 • • • • •	••••	• • • • •	 • • • •	• • • •	••••	 ••••	• • • •	••••	• • • •	• • • • •	 ••••	••••	• • • •	 • • • • •	••••	• • • • •	 	 • • • •	••••	 	••••	 ••••	 • • • • •	••••	•••••	••••	 	•••••

(iii) Describe how the student could use the mobile phone to investigate the strength of the magnetic field at different distances from the magnet.

(3)

 	 	 	 	 	• • • • • •	 	 	 	 	 	• • • • • •	 	• • • • • •	 	• • • • • •	 	• • • • • •	 • • • • • •	 	 	• • • • • •	 	 •	

(Total for Question 2 = 9 marks)

- **4** Three students carry out an investigation to determine their powers when running up stairs.
 - (a) Figure 7 shows a diagram of the stairs with four distances, A, B, C and D, marked.

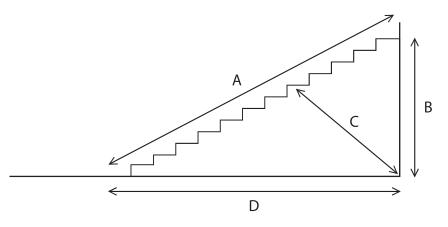


Figure 7

The students need to calculate the work done against gravity.

Which distance should be used in the calculation?

(1)

- A A
- B B

(b) They take turns to run up the stairs and use a stopwatch to measure the time taken.

The students estimate their own weight.

Figure 8 shows a table of their results.

The table is not complete.

student	student estimate of weight in N	distance in m	work done	time taken in s	power in W
А	550	4.0	2200	5.0	440
В		4.0	1960	4.5	436
С	510	4.0	2040		425

Figure 8

(i) State the unit for work done.

(1)

unit for work done is

(ii) Use the data for student B to calculate his estimated weight.

(2)

(iii) Use the data for student C to calculate the time she takes.

(2)

(iv) Use the data for all three students to calculate the average power of the students.

(2)

(c)	Identify a significant source of error in the investigation and state how this error can be reduced.	(2)
	source of error	
	can be reduced by	
	(Total for Question 4 = 10 ma	rks)

6 (a) When water boils and turns into steam, there are changes in the arrangement of particles and the density.

Which of these shows the changes?

(1)

		space between particles in steam	density of steam
X	Α	bigger than in water	greater than water
×	В	bigger than in water	less than water
×	C	smaller than in water	greater than water
X	D	smaller than in water	less than water

(b) Figure 11 shows some water in a measuring cylinder and a lump of iron.

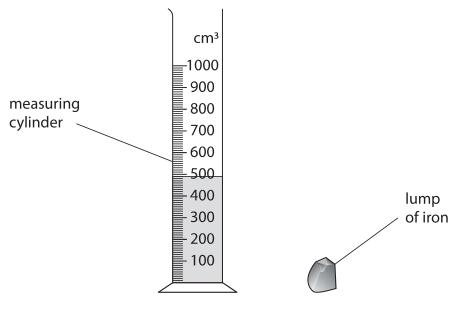


Figure 11

The lump of iron is lowered fully into the water.

The water level in the measuring cylinder rises to 530 cm³.

The density of iron is 7.9 g/cm³.

Calculate the mass of the lump of iron.

Use the equation

$$density = \frac{mass}{volume}$$

Give your answer to 2 significant figures.

(4)

(c) A piece of wood has a similar shape and volume to the lump of iron.	
The density of the wood is $0.82 \mathrm{g/cm^3}$.	
The density of water is 1.00 g/cm ³	
Explain why the method used in part (b) cannot be used to determine the mathematical the piece of wood.	ss of
the piece of wood.	(2)

*(d) A student needs to determine the specific heat capacity of water.

Figure 12 shows some of the equipment the student uses.

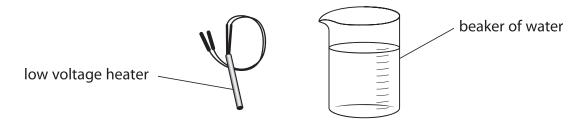


Figure 12

Describe the method the student should use to determine the specific heat capacity of water.

Your description should include, with reasons,

- · any other equipment needed
- the measurements needed.

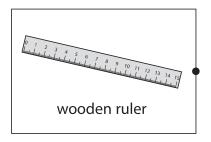
You may draw a diagram if it helps your answer.

(6)

(Total for Question 6 = 13 marks)
TOTAL FOR PAPER = 60 MARKS

2 (a) Figure 3 shows some objects and words describing these objects.

Draw one line from each object to its description.


object description

nail in a

current-carrying coil

temporary magnet

Figure 3

(b) Figure 4 shows a wire passing through a piece of card. The wire carries an electric current.

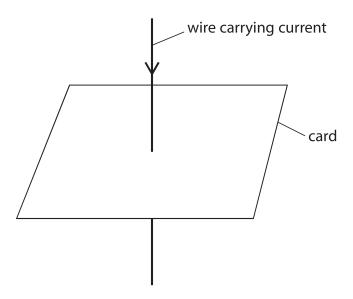


Figure 4

(i) Draw **one** magnetic field line on Figure 4, to show the shape of the magnetic field produced by the current.

(1)

(ii) Draw **one** arrow on the field line you have drawn to show the direction of the magnetic field.

(1)

(c) A student measures the strength of the magnetic field at several distances from the wire in Figure 4.

Figure 5 shows most of the student's results.

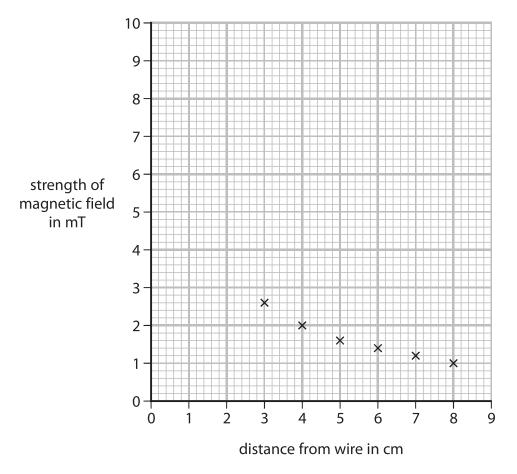


Figure 5

Figure 6 shows two extra sets of results. mT is a unit of strength of a magnetic field.

distance from wire in cm	strength of magnetic field in mT
1.0	8.1
2.0	3.9

Figure 6

(i) Plot the two extra points on Figure 5.

(2)

(ii) Draw a best fit curve on the graph in Figure 5.

(1)

(iii) Use the graph in Figure 5 to calculate the change in strength of magnetic field when the distance from the wire changes from 4cm to 8cm.	(2)	
change in strength of magnetic field =	n	nΤ
(iv) The distance from the wire affects the strength of the magnetic field.		
State one other factor that affects the strength of the magnetic field.	(1)	
(Total for Question 2 = 10 ma	rks)	••••

- **4** This question is about energy changes.
 - (a) Figure 8 shows a water slide.

 A person travels from the top to the bottom of the water slide.

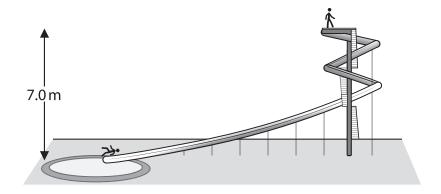


Figure 8

(i) The mass of the person, $m = 72 \,\text{kg}$. The change in vertical height, $h = 7.0 \,\text{m}$ Gravitational field strength, $g = 10 \,\text{N/kg}$

Calculate the change in gravitational potential energy for the person.

Use the equation

change in gravitational potential energy = $m \times g \times h$

(2)

(ii) The person comes to rest after the end of the water slide.

Explain what happens to the energy as the person comes to rest after the end of the water slide.

(2)

(b) Figure 9 shows a person pushing a box from the bottom of a slope to the top of the slope.

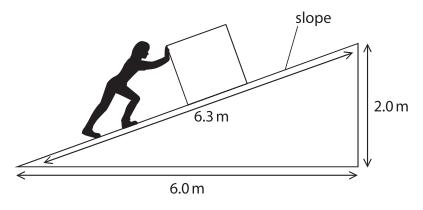


Figure 9

Explain which one of the three distances shown in Figure 9 should be used to calculate the work done against the force of friction between the box and the slope.

(2)

(c) Calculate the kinetic energy of a tennis ball travelling at $28 \,\text{m/s}$. The mass of the tennis ball = $58 \,\text{g}$.

Use the equation

$$KE = \frac{1}{2} \times m \times v^2$$

(3)

kinetic energy = J

(Total for Question 4 = 9 marks)

5 (a) Describe, in terms of particles, **two** differences between a solid and a liquid of the same substance.

(2)

1.....

2.....

(b) Figure 13 shows the dimensions of a solid block of concrete.

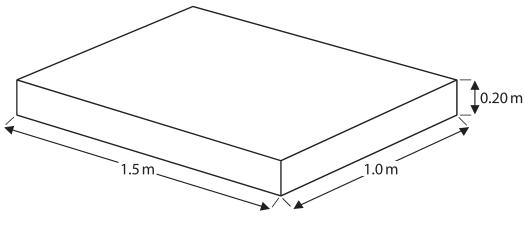


Figure 13

Density of concrete, $\rho_r = 2100 \,\mathrm{kg/m^3}$.

Calculate the mass of the concrete block.

Use the equation:

$$m = \rho \times V$$

(3)

mass of concrete block =kg

(c) Figure 14 shows a shed made mostly of concrete blocks.

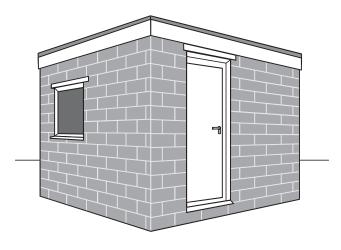


Figure 14

State **two** practical ways to reduce heat loss from this shed.

1		
2	 	

(2)

(6)

*(d) A student has two metal strips and a ruler, as shown in Figure 15.

A teacher tells the student that

- one metal strip is made of aluminium
- the other metal strip is made of stainless steel.

The student looks up data in a reference book, finding some density values:

density of aluminium = 2710 kg/m^3

density of stainless steel = 7850 kg/m³

The student has access to more of the same metal strips, if needed, and may ask for any extra measuring devices.

Figure 15

Plan how the student could confirm the teacher's statements, by determining the density of each of the strips as accurately as possible.

(Total for Question 6 = 13 marks)

TOTAL FOR PAPER = 60 MARKS

Question number	Answer	Additional guidance	Mark
2 (a)(i)	(soft) iron (1)	allow (in this context) nickel (alloys) cobalt	(1) AO1
		steel	AOI

Question number	Answer	Additional guidance	Mark
2 (a)(ii)	would be magnetised (when switch is closed) (1)	(is) magnetic (is) electromagnetic induced magnetism	(2) AO1
	would be demagnetised when switch is open (1)	magnetism can be switched off	
		accept for either mark not permanent magnet or temporary magnet	

Question number	Answer Additional guidance		Mark
2 (b)(i)	the <u>Earth/world/planet</u> has a magnetic field / core(1)	Earth/world/planet has a north (and south) pole	(1) AO3

Question number	Answer	Additional guidance	Mark
2(b)(ii)	direction (of the field) has changed / rotated (1)	(from 0 to) 36° from N to NE	(2)
			AO3
	(strength of the) field has increased (1)	field is stronger	
	mereaseu (1)	(changed by) 16.52 (µT)	
		numbers have increased (from 46.67 to 63.19)	

Question number	Answer	Additional guidance	Mark
2 (b)(iii)	a description including three from		(3)
	use of equipment to measure distance (1) ruler / tape measure obtain a measurement (1)		A03
	measure / record strength of the field (at a certain point)	measure the distance between phone and magnet	
	change the conditions (1) move the phone / magnet (to a different location)	rotate the phone/magnet	
	process the results (1) e.g. draw a diagram make a table compare results/values see when (field) stays constant		

Total 9 marks

Question number	Answer	Additional guidance	Mark
4 (a)	В		(1)
	A, C and D are incorrect because these do not measure the vertical change in height above the earth's surface.		A01

Question number	Answer	Additional guidance	Mark
4 (b)(i)	joule(s)	j Nm newton metre(s) kg m² s-² kg m²/s²	(1) AO1
		Ignore SI prefixes do not accept nm	

Question number	Answer	Additional guidance	Mark
4 (b)(ii)	selection of and substitution into	accept	(2)
	$E = F \times d (1)$	P x t = F x d	A02
	1960 = weight x 4.0	436 x 4.5 = weight x 4.0	
	rearrangement and evaluation (1)		
	(weight =) 490 (N)	490.5 or 491	
		award full marks for the correct answer without working	
		530 scores 1 mark (used data to calculate median value)	

Question number	Answer	Additional guidance	Mark
4 (b)(iii)	selection of and substitution into $P = E \div t (1)$ $425 = 2040 \div t$		(2) AO2
	rearrangement and evaluation (1)		
	(time =) 4.8 (s)	0.208 scores 1 mark 867000 scores 1 mark	
		award full marks for the correct answer without working	

Question number	ber	Additional guidance	Mark
4 (b)(iv)			(2)
	440 + 436 + 425 (3)	1301 (3)	AO2
	evaluation (1)		
	434 (W)	accept values that round to 434 e.g. 433.667	
		accept 436 (median average) for 2 marks	
		1301 scores 1 mark 1017(.666) scores 1 mark	
		award full marks for the correct answer without working	

Question number	Answer	Additional guidance	Mark
4 (c)	estimate of weight (1)	ignore reaction time	(2)
	measure (actual) weight (1)	use scales ignore repeating measurements	A03

Total 10 marks

Question number	Answer			Mark
6 (a)	water. C is incoincrease D is inco	orrect because the spaces.	less than water sity of steam is less than the between the particles the between the particles is less than water.	(1) AO1

Question number	Answer	Additional guidance	Mark
6 (b)	calculation of change in volume (1) $(530 \text{ cm}^3 - 490 \text{ cm}^3) = 40 \text{ (cm}^3)$	measurement mark – using scale	(4) AO2
	substitution (1) $7.9 = \frac{mass}{40}$	allow use of incorrect volume	
	rearrangement and evaluation (1)	answers without working	
	(mass = 7.9 x 40) (mass =) 316 (g)	316 scores 3 marks	
		0.316 kg scores 3 marks	
		316 to any other power of 10 scores 2 marks	
		4187 or 3871 scores 2 marks (incorrect volume)	
	evaluation to 2 sig fig (1) 320 (g)	any answer written to 2sf independent mark	
		answers without working	
		320 scores 4 marks	
		320 to any other power of ten scores 3 marks	
		4200 scores 3 marks 3900 scores 3 marks	

Question number	Answer	Additional guidance	Mark
6 (c)	an explanation linking		(2)
	density of wood less (than that of water) (1)	allow wood floats / should be submerged	A02
		allow wood absorbing water	
	less (volume of) water displaced (than volume of wood) (1)	allow (idea of) incorrect volume reading	
		allow (idea that) the volume cannot be measured this way	

Question number	Indicative content	Mark
*6(d)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	(6) AO1
	Equipment Thermometer Measuring cylinder / balance Power supply Stirrer Joule meter / ammeter / voltmeter Stopwatch / clock	
	Measurements Mass / volume of water Initial / final / change of temperature of water Voltage / current / energy / power Time (heated for)	
	 Lid/insulation to reduce energy loss Ensure heater fully immersed / keep stirring the water Use of equation ΔQ = m × c × Δθ / calculation of input energy Repeat and find average Plot graph of temp change and time / energy 	
	Credit can be given for correctly labelled diagrams	

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1)
		 Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 2	3-4	 Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1)
		 Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)
Level 3	5-6	 Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Level	Mark	Additional Guidance	General additional guidance – the decision within levels e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance one measurement or two items of equipment or one piece of detail	Possible candidate responses measure the temperature of the water to start with or the student needs a power supply and a thermometer or insulated material around the beaker
Level 2	3-4	Additional guidance two items of equipment and at least one measurement or one piece of equipment and two measurements or two items of equipment and one piece of detail or one measurement and one piece of detail	Possible candidate responses The student needs a measuring cylinder to measure the volume of water. They also need a thermometer Or Measure the temperature rise of the water and use a balance to measure the mass or They need a power supply for the heater and a voltmeter. Keep the heater in the water. or Measure temperature rise of the water. Keep stirring the water all the time.
Level 3	5-6	Additional guidance two items of equipment and two measurements and one piece of detail.	Possible candidate responses The student needs a balance to find the mass of water. They also need a thermometer to measure the rise in temperature of the water. Then use the equation $\Delta Q = m \times c \times \Delta \theta$

Total 13 marks

Total for paper = 60 marks

Question number	Answer	Additional guidance	Mark
2a	object description non-magnetic current-carrying coil permanent magnet plotting compass needle temporary magnet wooden ruler	three links correct (2) one link correct (1)	(2) AO1

Question number	Answer	Additional guidance	Mark
2 (b) i	circle shown around wire (1)	allow tolerance for translation of 3D to 2D ignore any multiplicity of those circles	(1) AO1

Question number	Answer	Additional guidance	Mark
2 (b) ii	arrow indicating a clockwise direction (for magnetic field line drawn for i) (1)		(1) AO1

Question number	Answer		Additional guidance	Mark
2(c)i	10 - 9 - 8 - X - 7 - 6 - 5 - 4 - X - 3 - X - 2 - X - 1 - 0 0 1 2 3 4	One mark for each point plotted correctly, to within ± 1 small square		(2) AO2

Question number	Answer	Additional guidance	Mark
2(c)ii	smooth curve drawn fitting the plotted points (1)	judge by eye	(1) AO2

Question number	Answer	Additional guidance	Mark
2ciii	substitution using an attempt at calculation – any subtraction seen (1) e.g. 2(.0) – 1(.0)		(2) AO3
	evaluation (1) (-) 1(.0) (mT)	accept any number that rounds to 1.0	
		award full marks for correct answer without working	

Question number	Answer	Mark
2 (c) iv	(size of) current	(1) AO1

(Total for Question 2 = 9 marks)

Question number	Answer	Additional guidance	Mark
4(a)i	substitution (1)		(2) AO2
	$(\triangle GPE) = 72 \times 10 \times 7.0$	do not penalise any power of ten error (p.o.t.e.) at this stage do not accept an answer without value for g (10) being used)	
	evaluation (1) 5040 (J)	- ,	
		award full marks for correct answer without working	

Question number	Answer	Additional guidance	Mark
4aii	an explanation to include		(2) AO3
	(potential / kinetic) energy is transferred / dissipated (1)	accept lost / deceases accept friction / air resistance acts	
	to surroundings / water / air / slide (1)	accept to thermal (store)	

Question number	Answer	Additional guidance	Mark
4b	Explanation linking two from:		(2) AO3
	choice of distance (1) 6.3 m		
	(calculations of work done need) the distance moved in the direction of the force (1)	accept pushed up the slope	
	(friction acts) along the slope / hypotenuse (1)		

Question number	Answer	Additional guidance	Mark
4 (c)	substitution (1)		(3)
	$KE = \frac{1}{2} \times 58 \left(\times 10^{-3} \right) \times 28^2$	do not penalise p.o.t.e. at this stage	AO2
	conversion (1) uses 58×10^{-3} or 0.058		
	evaluation (1)		
	23 (J)	award full marks for any answer that rounds to 23 (e.g. 22.736) (J) award max two	
		marks for any answer that rounds to 2.3 to any other power of 10	
		consolation mark for not squaring 28 (8.1(2) to any p.o.t.) (maximum 1 mark)	

(Total for Question 4 = 9 marks)

Question number	Answer	Additional guidance	Mark
6(a)	descriptions to include any two of		(2) AO1
	 particles / atoms in solid close(r) together (1) 	reverse argument	
		difference asked for, so must compare for subsequent marking points	
	 particles / atoms in solid (vibrate) in fixed positions but particles in liquid move (freely) (1) 		
	particles in a solid in regular arrangement but particles in liquid are randomly arranged (1)		
	particles in a liquid have more (kinetic) energy (than in a solid) (1)		
		allow answers in terms of forces between particles	

Question number	Answer	Additional guidance	Mark
6(b)	volume substitution (1) $1.5 \times 1.0 \times 0.2(0) (= 0.3)$		(3) AO2
	substitution in equation (1) mass = $2100 \times (0.3(0))$	ecf from calculated value of volume for this mark only	
	evaluation (1) = 630 (kg)	award 2 marks for 6.3 x any other power of 10	
		5670 gains 1 mark from use of 1.5+1.0+0.2=2.7	
		award full marks for correct answer without working	

Question number	Answer	Additional guidance	Mark
6(c)	statements to include any two from		(2) AO1
	use cladding / (extra) insulation (1)		
	use double thicknesses of the concrete (1)	create cavity	
	use silver / reflective / white (paint) (1)		
	plant trees around (wind break) (1)		
	use double glazed windows (1)		
	(properly) close window(s)/door	draft exclusion	

Question	Indicative content	Mark
number		114111
_	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. **AO1 (strand 2) (6 marks)* Indicative content **measure the length and width of a strip with the ruler / a metre rule **measure the thickness of the strip with a more accurate device e.g. digital callipers OR place 5 (say) of the same strip on top of each other and measure their thickness with the ruler then ÷5 to calculate a single thickness [plus air gap] **measure the mass of a strip with an electronic balance **measure the mass of (say) 5 strips then ÷5 to calculate the mass of one of them **calculate the volume (= x w x t) in m³ and the mass in kg **use displacement can/measuring cylinder to find the volume **mass / volume to get density **check if it's near one of the teacher's two values of density given **if it's close / not so far off it's safe to assume that strip is of the identified material **repeat for the other strip **other repeat measurements	(6) AO1

AO targeting: AO1.2

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1)
		 Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 2	3-4	 Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1)
		 Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)
Level 3	5-6	 Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1)
		 Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Summary for guidance

Level Mark Additional Guidance General additional guidance – the				
Levei	Mark	Additional Guidance	General additional guidance - the decision within levels	
			e.g At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.	
	0	No rewardable material.		
Level 1	1-2	Additional guidance	Possible candidate responses	
		Partially complete description of a suitable procedure with at least two measurements	measure the length measure the width of a strip measure the mass/weight of a strip	
		OR one measurement and another procedural point	e.g. repeat measurements	
Level 2	3-4	Additional guidance	Possible candidate responses	
		Mostly complete description of a suitable procedure with at least	As above with measure the thickness of the strip	
		three measurements and some description of	calculate the volume (= I x w x t) OR	
		processing the results.	immerse in liquid to get volume	
Level 3	5-6	Additional guidance	Possible candidate responses	
		Detailed description of a suitable procedure with all necessary measurements and a clear description of processing the results.	As above with extra detail e.g. measure the mass of (say) 5 strips then ÷5 to calculate the mass of one of them detail of obtaining volume by immersion use density =mass /volume	
			check if density value obtained is near one of the teacher's two values	

If you're taking **GCSE (9–1) Combined Science** or **GCSE (9–1) Physics**, you will need these equations:

HT = higher tier

	distance travelled = average speed \times time	
	acceleration = change in velocity ÷ time taken	$a = \frac{(v - u)}{t}$
	force = $mass \times acceleration$	$F = m \times a$
	weight = $mass \times gravitational$ field strength	$W = m \times g$
нт	momentum = mass × velocity	$p = m \times v$
	change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	$\Delta GPE = m \times g \times \Delta h$
	kinetic energy = $1/2 \times \text{mass} \times (\text{speed})^2$	$KE = \frac{1}{2} \times m \times v^2$
	efficiency = $\frac{\text{(useful energy transferred by the device)}}{\text{(total energy supplied to the device)}}$	
	wave speed = frequency \times wavelength	$v = f \times \lambda$
	wave speed = distance ÷ time	$v = \frac{x}{t}$
	work done = force \times distance moved in the direction of the force	$E = F \times d$
	power = work done ÷ time taken	$P = \frac{E}{t}$
	energy transferred = charge moved \times potential difference	$E = Q \times V$
	$charge = current \times time$	$Q = I \times t$
	potential difference = current \times resistance	$V = I \times R$
	power = energy transferred ÷ time taken	$P = \frac{E}{t}$
	electrical power = current \times potential difference	$P = I \times V$
	electrical power = $(current)^2 \times resistance$	$P = I^2 \times R$
	density = mass ÷ volume	$ \rho = \frac{m}{V} $

	force exerted on a spring = spring constant \times extension	$F = k \times x$
	(final velocity) ² – (initial velocity) ² = $2 \times acceleration \times distance$	$v^2 - u^2 = 2 \times a \times x$
нт	force = change in momentum ÷ time	$F = \frac{(mv - mu)}{t}$
	energy transferred = current \times potential difference \times time	$E = I \times V \times t$
нт	force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density × current × length	$F = B \times I \times l$
	For transformers with 100% efficiency, potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil	$V_{P} \times I_{P} = V_{S} \times I_{S}$
	change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = m \times c \times \Delta \theta$
	thermal energy for a change of state = mass \times specific latent heat	$Q = m \times L$
	energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E = \frac{1}{2} \times k \times x^2$

If you're taking **GCSE (9–1) Physics**, you also need these extra equations:

	moment of a force = force \times distance normal to the direction of the force	
	pressure = force normal to surface ÷ area of surface	$P = \frac{F}{A}$
нт	$\frac{potential\ difference\ across\ primary\ coil}{potential\ difference\ across\ secondary\ coil} = \frac{number\ of\ turns\ in\ primary\ coil}{number\ of\ turns\ in\ secondary\ coil}$	$\frac{V_{\rm p}}{V_{\rm S}} = \frac{N_{\rm p}}{N_{\rm S}}$
	to calculate pressure or volume for gases of fixed mass at constant temperature	$P_1 \times V_1 = P_2 \times V_2$
нт	pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength	$P = h \times \rho \times g$

END OF EQUATION LIST