Please check the examination details belo	w hefore ente	ring your candidate information
Candidate surname	w before effice	Other names
Centre Number Candidate Number Pearson Edexcel Level		el 2 GCSF (9-1)
Friday 9 June 2023	1,20	
Afternoon (Time: 1 hour 10 minutes)	Paper reference	1SC0/2BH
Combined Science PAPER 4	e	♦
		Higher Tier
You must have: Ruler, calculator		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

BLANK PAGE

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 People with diabetes cannot always control the concentration of glucose in their blood.
 - (a) Two people eat identical meals.

One person has diabetes, the other person does not have diabetes.

Figure 1 shows the concentration of glucose in the blood of these two people after eating the meals.

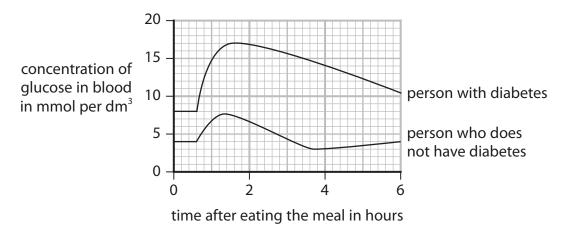


Figure 1

(i)	Calculate the maximum increase in the concentration of glucose in the blood
	of the person with diabetes.

.....mmol per dm³

(1)

(ii)	Water moved out of the red blood cells of the person with diabetes when th
	concentration of glucose in the blood was above 15 mmol per dm ³ .

Explain why water moved out of the red blood cells of the person with diabetes.

(2)

			decrease.	
(i)	Nam	e thi	s hormone.	(1)
(ii)	State	hov	v this hormone is transported from the pancreas to its target organs.	(1)
(iii)			the target organ for the hormone that controls the concentration of n the blood?	(1)
	X	A	kidney	,
	X	В	pancreas	
	X	C	liver	
	X	D	lung	
:) Exp	olain h	10W	type 2 diabetes can be controlled.	(3)

Respiration occurs in cells.	
(a) Why do cells respire?	
	(1)
■ A to produce nitrogen	
■ B to release oxygen	
C to produce glucose	
D to release energy	
(b) An athlete runs every day as part of their training.	
(i) Explain why the breathing rate of the athlete increases when running.	(2)
	(2)
(ii) When the athlete is running, their muscle cells use both aerobic respiration and anaerobic respiration.	
State two differences between aerobic respiration and anaerobic respiration.	
	(2)

(c) Bromothymol blue (BTB) solution is an indicator of pH.

Figure 2 shows the colour of BTB at different pH levels.

рН	4	5	6	7 (neutral)	8
colour	yellow	yellowy green	light green	green	blue

Figure 2

When air is passed through green BTB, for one minute, the solution stays green.

When a person breathes out through a straw into BTB for one minute the solution turns yellow.

(1)	Explain w	ny the air br	eathed out	turns the B	1B solution	yellow.	(2)

(ii) A scientist placed pondweed into two sealed test tubes containing green BTB solution.

Test tube A was kept in the dark.
Test tube B was kept in the light.
All other conditions were kept the same.
Figure 3 shows these test tubes at the start of the investigation.

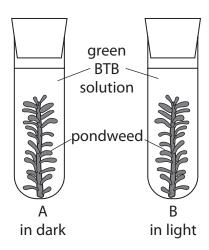


Figure 3

Figure 4 shows the colour of the BTB solution after 5 hours.

Tube A (in dark)	Tube B (in light)
yellowy green	green

Figure 4

	(Total for Question 2 = 9 marks)	
	(2)	
Explain the results for tube A and	tube B shown in Figure 4.	

BLANK PAGE

3 A student investigated the effect of light intensity on the photosynthesis of pondweed.

A light source was placed at different distances from the pondweed.

The bubbles produced were counted for 2 minutes.

Figure 5 shows the apparatus that was used.

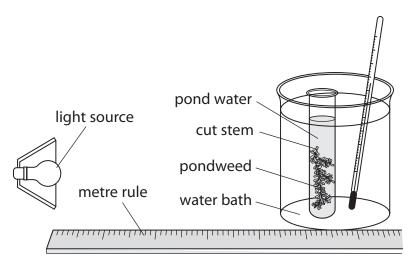


Figure 5

(a)	(1)	State why the student included a water bath in the apparatus.	
			(1)

(ii) State **two** variables that should be controlled when completing this investigation. (2)

(b) Figure 6 shows the results of this investigation.

distance from the lamp in cm	number of bubbles in two minutes	light intensity in arbitrary units
5	62	0.04
10	60	0.01
15	43	0.0044
20	32	0.0025
25	11	?

Figure 6

(i) The light intensity was calculated using the inverse square law for photosynthesis.

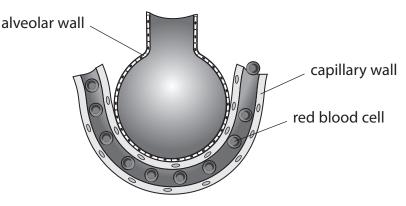
Calculate the light intensity at a distance of 25 cm from the lamp.

Include the equation for the inverse square law in your answer.

.....arbitrary units

(ii) Explain how the student could improve this investigation to get a more accurate measurement of the gas produced.

(2)


(3)

(c) Devise a plan to show that temperature is a limiting factor in photosynthesis.			
Use the apparatus shown in Figure 5.	(3)		
(Total for Question 3 = 1	1 marks)		

4 Gas exchange happens in the alveoli in the lungs.

Figure 7 shows an alveolus and a capillary.

(adapted from : sciencepics/shutterstock)

Figure 7

(a) (i) Name the gas used in respiration that moves from the alveolus into the capillary.

(1)

(ii) Name the gas produced by respiration that moves from the capillary into the alveolus.

(1)

(iii) The capillary wall is only one cell thick.

Explain how gases move from the alveolus to the capillary.

(3)

	(iv)	Explain the advantages of red blood cells passing one at a time through this narrow capillary.	
			(3)
(b)	The	e average number of alveoli in each human lung is 280 million.	
	The	e surface area of 1 million alveoli is 0.25 m².	
	Cal	culate the total surface area of a human lung.	(2)
			(-)
		(Total for Question 4 = 10 ma	rks)

BLANK PAGE

5 Figure 8 shows the changes in the levels of the hormones of the menstrual cycle.

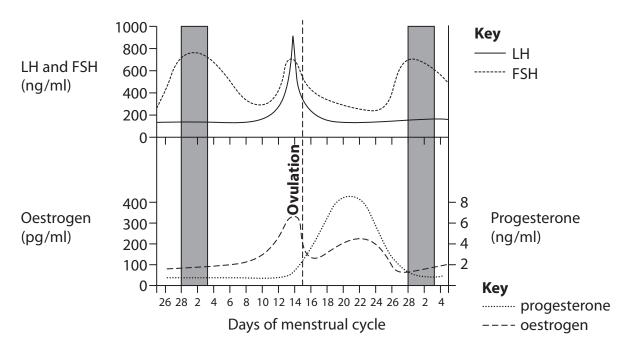


Figure 8

(a) (i) The maximum concentration of oestrogen is just before ovulation.

Which is the maximum concentration of oestrogen?

(1)

- A 8ng/ml
- **B** 210 pg/ml

(II)	Explain	how t	two c	of the	hormones	shown in	Figure 8	8 cause	ovula	tion
------	---------	-------	-------	--------	----------	----------	----------	---------	-------	------

(3)

(iii) State the number of days for the first menstruation shown in Figure 8.	(1)
(iv) Explain how the levels of each hormone in the woman shown in Figure 8 would be different, if she was pregnant.	(4)
(Total for Question 5 = 9	marks)

6 Figure 9 shows a photomicrograph of two stomata in a leaf.

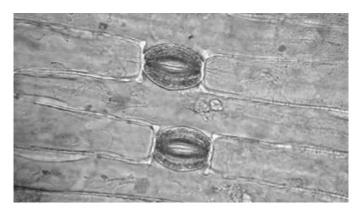


Figure 9

(1)

(ii) The image has been magnified 150×.Calculate the actual size of the guard cell.Give your answer in standard form in mm.

(3)

(b) Explain the role of denitrifying bacteria in the nitrogen cycle.

(2)

an ecosystem.	(6)
	(6)
	(Total for Question 6 = 12 marks)

BLANK PAGE

BLANK PAGE

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In Combined Science (1SC0) Paper 2BH

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Publications Code 1SC0_2BH_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word			
Strand	Element	Describe	Explain		
AO1		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required		
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)		
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description			
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning		
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment			
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning		

Paper 1SC0 1BH 2306

Question number	Answer	Mark
1(a)(i)	9 (mmol per dm³)	(1)

Question number	Answer	Additional guidance	Mark
1(a)(ii)	 An explanation including: (water moves out) by osmosis (1) because the concentration of glucose is higher in the blood (plasma) (1) 	accept from a high water potential inside the cell to a low water potential outside the cell	(2)
	 across a partially permeable membrane (1) 		

Question number	Answer	Mark
1(b)(i)	insulin	(1)

Question number	Answer	Additional guidance	Mark
1(b)(ii)	in the blood / plasma	accept dissolved / in solution	(1)

Question number	Answer	Mark
1(b)(iii)	The only correct answer is	(1)
	C liver	
	A is incorrect because the target organ is not the kidney	
	B is incorrect because the pancreas produces insulin	
	D is incorrect because the target organ is not the lungs	

Question number	Answer	Additional guidance	Mark
1(c)	An explanation including three from:		(3)
	• exercise (1)		
	control diet / lose weight (1)	accept avoid {sugar / carbohydrate} in your diet	
	 to {reduce / control} blood glucose (1) 	, , , , , , , , , , , , , , , , , , , ,	
		accept methods of testing blood for signs of diabetes (1)	
		accept take {medication / metformin / insulin} (1)	

(Total for question 1 = 9 marks)

Question number	Answer	Mark
2(a)	The only correct answer is	(1)
	D to release energy	
	A is incorrect because nitrogen is not involved in respiration.	
	B is incorrect because oxygen is used during respiration, not released	
	C is incorrect because glucose is used during respiration, not produced	

Question number	Answer	Additional guidance	Mark
2(b)(i)	 An explanation linking two from: to absorb more oxygen (into the blood / body) (1) 	accept to absorb oxygen (into the blood) more quickly	(2)
	so that more respiration can occur / more energy is released (1) OR	accept so that respiration can occur more quickly / energy is released more quickly	
	to remove more carbon dioxide (from the blood / body) (1) from more respiration /		
	from more respiration / because carbon dioxide makes the blood more acidic (1)		

Question number	Answer	Additional guidance	Mark
2(b)(ii)	 An answer including two from: aerobic respiration uses oxygen / anaerobic does not use oxygen (1) aerobic respiration releases more energy / anaerobic releases less energy (1) 	accept ATP for energy	(2)
	aerobic produces {carbon dioxide / water} / anaerobic respiration produces lactic acid (1)	accept lactate for lactic acid accept aerobic respiration takes place in the mitochondria / anaerobic respiration takes place in the cytoplasm (1) ignore references to types of exercise / when the types of respiration occur	

Question number	Answer	Additional guidance	Mark
2(c)(i)	An explanation linking:		(2)
	 you breathe out (air with a high concentration of) carbon dioxide (1) 	accept it contains carbon dioxide	
	 which forms a (weak) acid (when it dissolves) (1) 	accept lowers the pH	

Question number	Answer	Mark
2(c)(ii)	 An explanation linking: tube A - respiration took place (producing carbon dioxide) / photosynthesis did not take place (1) 	(2)
	 tube B – photosynthesis took place (using up the carbon dioxide) (1) 	

(Total for question 2 = 9 marks)

Question number	Answer	Mark
3(a)(i)	to maintain a constant temperature / as a heat shield	(1)

Question number	Answer	Additional guidance	Mark
3(a)(ii)	Any two from:		(2)
	• extraneous light (1)	accept use the same light	
	• temperature (1)	bulb/source	
	 volume of pond water (1) 		
	 {length / mass / type} of pond weed (1) 	ignore amount / size of pondweed	
	 carbon dioxide concentration (1) 		

Question number	Answer	Additional guidance	Mark
3(b)(i)	(light intensity \propto) $\frac{1}{d^2}$ (1)	accept a written equation	(3)
	1 ÷ {25 ² / 625} (1)		
	0.0016 (arbitrary units)	Correct answer with no working is full marks	

Question number	Answer	Mark
3(b)(ii)	An explanation including two of the following:	(2)
	collect the gas produced (1)	
	 using a gas syringe / measuring cylinder (1) 	
	 to get a measurement of volume of {oxygen / gas} (1) OR 	
	use a video camera / data logger (1)	
	 playback in slow motion and count the bubbles (1) 	

Question number	Answer	Additional guidance	Mark
3(c)	A plan including three from the following:		(3)
	keep the light at the same distance from the pondweed (1)	accept keep the same light intensity	
	 count the number of bubbles / measure the oxygen produced (1) 	accept collect the oxygen accept gas for oxygen	
	 repeat at different temperatures (1) 		
	 control {carbon dioxide concentration / mass of pond weed} (1) 	accept type of pondweed	

(Total for question 3 = 11 marks)

Question number	Answer	Mark
4(a)(i)	oxygen / O ₂	(1)

Question number	Answer	Mark
4(a)(ii)	carbon dioxide / CO ₂	(1)

Question number	Answer	Mark
4(a)(iii)	An explanation including the following:	(3)
	by diffusion (1)	
	 down a concentration gradient / from high concentration to a low concentration (1) 	
	 through a membrane (1) 	

Question number	Answer	Additional guidance	Mark
4(a)(iv)	An explanation including three from the following:		(3)
	to reduce the distance over which diffusion occurs (1)		
	makes the blood flow slower (1)		
	• increases the surface area (1)	accept large surface area	
	 to increase {diffusion / gas exchange} (1) 	accept more time to diffuse	
	to maximise the amount of oxygen taken up by the red blood cells (1)	accept the reverse argument for oxygen being released	

Question number	Answer	Mark
4(b)	calculation	(2)
	$(280 \times 0.25 =) 70 (1)$	
	m ² (1)	

(Total for question 4 = 10 marks)

Question number	Answer	Mark
5(a)(i)	The only correct answer is C 320 pg/ml	(1)
	A is incorrect because this is the reading for progesterone	
	B is incorrect because this is the second peak reading for oestrogen	
	D is incorrect because this is the reading for LH	

Question number	Answer	Mark
5(a)(ii)	An explanation including three of the following:• FSH causes the {egg / follicle} to mature (1)	
	• FSH stimulates oestrogen (1)	
	high levels of oestrogen (1)	
	LH / LH surge (1)	
	causes the egg to be released (1)	

Question number	Answer	Mark
5(a)(iii)	3 / three (days)	(1)

Question number	Answer	Mark
5(a)(iv)	An explanation including the following:	(4)
	 FSH levels remain low as no {egg / follicle} would mature (1) 	
	 LH levels remain low so ovulation would not occur (1) 	
	 progesterone inhibits {FSH / LH} / oestrogen inhibits FSH (1) 	
	 progesterone levels remain high to maintain the lining of the uterus (1) 	
	 high levels of oestrogen {build up / maintain} the lining of the uterus (1) 	

(Total for question 5 = 9 marks)

Question number	Answer	Mark
6(a)(i)	6000 μm	(1)
	6 x 10 ³	
	6.0×10^3	
	Reject 6 x 10 ⁻³	

Question number	Answer	Additional guidance	Mark
6(a)(ii)	6 ÷ 150 (1)		(3)
	0.04 (mm) (1)		
	4.0 x 10 ⁻² (mm)	accept 4 x 10 ⁻² for full marks	

Question number	Answer	Additional guidance	Mark
6(b)	A description linking the following:		(2)
	 (denitrifying bacteria) convert nitrates (1) 	accept nitrites	
	 back into (atmospheric) nitrogen (1) 		

Question number	Indicative content	Mark
*6(c)	AO1	(6)
	Biotic	
	 Plants During photosynthesis plants take in carbon dioxide from the atmosphere 	
	During respiration plants release carbon dioxide into the atmosphere	
	Plants store carbon compounds e.g. glucose	
	Carbon is transferred to animals when they are eaten	
	Animals • Animals release carbon dioxide when they respire	
	 Animals ingest carbon compounds e.g. glucose when they eat plants or animals 	
	 Decomposers Decomposers release carbon dioxide during respiration Decomposers break things down 	
	Burning fossil fuels releases carbon dioxide or carbon (particulates) into the atmosphere	
	The oceans can absorb carbon dioxide	
	Carbon can be stored in carbonate rocks	
	Erosion of carbonate rocks releases carbon dioxide	
	Volcanoes releasing carbon dioxide	

Level	Mark	Indicative content
	0	No rewardable material.
Level 1	1-2	a simple description one way in which carbon is cycledlinked to a process involved
Level 2	3-4	 A detailed description of how carbon is cycled in the biotic or abiotic environment or a simple description of how carbon is cycled in each environment Linked to two different processes involved
Level 3	5-6	 A detailed description of how carbon is cycled in the biotic and abiotic environment including the role of plants, animals and decomposers Linked to the processes of respiration and photosynthesis and an abiotic process

(Total for question 6 = 12 marks)