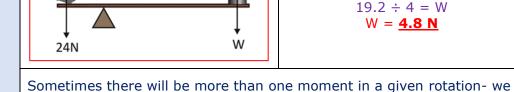
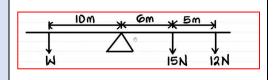


GCSE Separate Physics Paper 2 Outcomes Revision

Outcomes	Topic	Page
1-8	Physics key concepts	1-4
280 - 283	Separate Forces and their Effects	5-6
284 - 294	Static electricity	7-9
295 – 304	Separate Electromagnetic Induction	10-12
305-309	Separate Particle Model	13-14
310 - 322	Separate Forces and Matter	15-19


		Dhysica lesy concents					
Outcom		Physics key concepts					
Ph1		The SI units defined in the specification are:					
Recall and use unit for physica		Distance			Mass		Time
quantities, as listed in		Metre			Kilogram	5	econd
the specification		(m)			(kg)	Λ	(s)
,		Current		T	emperature		ount of a
		Ampere			Kelvin		ostance Mole
		(A)			(K)		(mol)
	_	Frequency	,		Force		nergy
		Hertz			Newton		Joule
		(Hz)			(N)	-	(J)
	-	Power			Pressure	Flecti	ric charge
		Watt			Pascal		oulomb
		(W)			(Pa)		(C)
		Electric poten	tial	Floo	tria registans	Magnetic	flux donaity
		difference		Elec	tric resistance Ohm		flux density Tesla
		Volt			(Ω)		(T)
		(V)			(25)		(1)
Ph2		Some numbers a		large o	or very small,	to make thes	se easier to
Recall and use		handle we use prefixes.					
and sub-multip units, including		Prefixes tell you l					
(G), mega (M),	1:12 (1.)	unit. For example					
centi (c), milli ((m)	1000 times small		a met	re. These nun	nbers are call	ed the
micro (μ) and r	nano(n)	conversion factor			a vou de the	following, 4 [- × 1000 -
		So, to convert 4.					
		$4500 \text{ g. To convert } 45 \text{ mm in meters: } 45 \times 0.001 = 0.045 \text{ m.}$					
		(N.B. 45×0.001 is the same as $4.5 \div 1000$). A table of common prefixes and their conversion factors is here:					
Tera (T)	Giga (G		Kilo	1	Milli (m)	Micro (µ)	Nano (n)
10 ¹²	10 ⁹	10 ⁶	100	` /	0.001	10 ⁻⁶	10 -9
		get given a value					
		Hz) 5.6 GHz = 5					24 10 40 15
	•	•		•),000)
Ph2a	Or 2.3 μ A, to convert this: 2.3 μ A = 2.3 x 10 ⁻⁶ A. (2.3 x 0.000,001 or 2.3 ÷ 1,000,000) Ph2a You may get given time in minutes, or even in hours, but we need time						
		n seconds if we a					
between differe		there are 60 seconds in a minute and 60 minutes in an hour.					
including hours	,	Convert 5 minutes into seconds: $5 \times 60 = 300 \text{ s}$					
		Convert 2 hours into seconds: 2 x 60 x 60 = 7200 s					
Ph3		To calculate a mean average, you must first find the sum of the					
Calculate mean averages, givin		individual values (add them all up and press equals). You then divide					
to appropriare	- ,				jations).		
of significant fig	'	Find the average of 25, 28 and 25. 25 + 28 + 25 = 78					
		25 + 28 + 25 = 78 $78 \div 3 = 26$					
		$78 \div 3 = 26$ Sometimes the average will not be a whole number, when presenting					
		you average value you should never give your answer to more					
		significant figures than were given in the original data. (See Ph4 for					
		more information on significant figures.)					
		Find the average of 5.6, 6.2 and 5.5					
		5.6 + 6.2 + 5.5 = 17.3					
		$17.3 \div 3 = 5.766666$, however the original data is only 2 significant			significant		
		figures so 5.8 should be written on the answer line.					


Outcomes	Physics key concepts
Ph3a Calculate mean averages, identifying and handling anomolus results	To calculate a mean average, you must first find the sum of the individual values (add them all up and press equals). You then divide the sum by the number of values (often 3 or 5 for investigations). Find the average of 25, 28 and 25. $25 + 28 + 25 = 78$ $78 \div 3 = 26$ Sometimes there is a result that clearly does not fit the pattern, this is called an anomaly, is usually due to an error. When calculating the
	average, we ignore this value and calculate the average of the remaining values. Find the average of 4.5, 8.2, 4.3 and 5 8.2 is clearly an anomaly so we ignore it: $4.5 + 4.3 + 5 = 13.8$ $13.8 \div 3 = 4.6$
Ph4 Use significant figures where appropriate	The first significant figure (s.f.) of a number is the first digit that is not a zero. The second and third significant figures come straight after the first (even if they are zeros). Remember that: If the number you are rounding is followed by 5, 6, 7, 8, or 9, round the number up. Example: 38 rounded to the nearest ten is 40 If the number you are rounding is followed by 0, 1, 2, 3, or 4, round the number off. Example: 33 rounded to the nearest ten is 30 Examples: Round 0.005642 to 2 s.f. = 0.0056 Round 56.42 to 2 s.f. = 56 Round 5642 to 2 s.f. = 57.7 N.B. it is good practice to give your final answer to the lowest number
Ph4a Use decimal places where appropriate	of significant figures given in a question. Sometimes you will get asked to give an answer to a certain number of decimal places (d.p.) - these are the digits that come after a decimal place. Remember that: If the number you are rounding is followed by 5, 6, 7, 8, or 9, round the number up. Example: 38 rounded to the nearest ten is 40 If the number you are rounding is followed by 0, 1, 2, 3, or 4, round the number off. Example: 33 rounded to the nearest ten is 30 Examples: Round 0.005642 to 2 d.p. = 0.01 Round 5.642 to 2 d.p. = 5.6 Round 5.642 to 2 d.p. = 5.6 Round 7.685 to 2 d.p. = 7.69

Outcomes	Physics ke	y concepts	
Ph4b Use standard form where appropriate	Standard form, or standard index form, is a system of writing numbers which can be particularly useful for working with very large or very small numbers. It is based on using powers of 10 to express how big or small a number is.		
	Standard form uses the fact that the decimal place value system is based on powers of 10:		
	For larger numbers we use a positive power of 10	For smaller numbers we use a negative power of 10	
	$10^2 = 100$	$10^{-2} = 0.01$	
	$10^3 = 1000$	$10^{-3} = 0.001$	
	$10^4 = 10000$	$10^{-4} = 0.0001$	
	$10^5 = 100000$	$10^{-5} = 0.00001$	
	$10^6 = 1000000$	$10^{-6} = 0.000001$	
	Example	Example	
	Write 50,000 in standard form.	Write 0.0005 in standard form.	
	50,000 can be written as: $5 \times 10,000$	0.0005 can be written as 5×0.0001 .	
	$10,000 = 10 \times 10 \times 10 \times 10 = 10^4$	$0.0001 = 10^{-4}$	
	So: $50,000 = 5 \times 10^4$	So $0.0005 = 5 imes 10^{-4}$	
	To input this into your calculator, press:	To input this into your calculator, press:	
	5 ×10 ^x 7 4	$\boxed{5} \boxed{\times 10^x} \boxed{(-)} \boxed{4}$	
Ph5 Devise an investigation	You may be asked to describe how to one of the core practical tasks.	to carry out an investigation similar	
	You should think about: The measurements you need to	make	
	 The equipment you will use to m How the equipment should be used 	nake these measurements	
	 Any health and safety to conside Describe any equations that wou 	er?	
	investigationWould you take repeats and find	·	
Ph5a	 What range of results you would In a conclusion you should say what 		
Can write, or comment on, a conclusion	relates to any prediction given in the e.g. As mass increased so did weigh	e question.	
	In a conclusion we try to us evidence answer.		
	e.g. When mass was 3 kg, weight w		
	weight was 60 N. When mass doubled so did weight. For better marks we try to explain why we got those results		
	e.g. Mass and weight are linked by the equation 'W = m x g' so if the value of g does not change then mass and weight are directly proportional.		
	See Ph8a for more information on d	irectly proportional relationships.	

Sometimes you get given an equation that you will never have seen before- don't let this throw you. Find the numbers that are reprinted in the equation and substitute the symbols with the numbers. Re-arrange the equation, if you need to. Resolve the equation- work out the answer. Think about which equipment would be the best choice and why. For example, if you were measuring a small length or short distance you would use a ruler- but if you were measuring 300 m then you would use a trundle wheel or possibly a tape measure. When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Plagarms These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the X axis values' increase, what happens to the 'Y axis values' increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional r	Outcomes	Physics key concepts
Find the numbers that are reprinted in the equation and substitute the symbols with the numbers. Re-arrange the equation, if you need to. Resolve the equation- work out the answer. Think about which equipment would be the best choice and why. For example, if you were measuring a small length or short distance you would use a ruler- but if you were measuring 300 m then you would use a trundle wheel or possibly a tape measure. When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: 1		
symbols with the numbers. Re-arrange the equation, if you need to. Resolve the equation, work out the answer. Think about which equipment would be the best choice and why. For example, if you were measuring a small length or short distance you would use a ruler- but if you were measuring 300 m then you would use a rundle wheel or possibly a tape measure. When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it in crease or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: - If one value doubles, then the other value also doubles - If one value double	Apply a given equation	,
Re-arrange the equation, if you need to. Resolve the equation- work out the answer. Think about which equipment would be the best choice and why. For example, if you were measuring a small length or short distance you would use a runer- but if you were measuring 300 m then you would use a trundle wheel or possibly a tape measure. When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: ' fone value is zero, then the other value also doubles I fone value is zero, then the other value		
Resolve the equation- work out the answer. Think about which equipment would be the best choice and why. For example, if you were measuring a small length or short distance you would use a ruler- but if you were measuring 300 m then you would use a trundle wheel or possibly a tape measure. When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: 'You get a straight line of best fit		
Think about which equipment would be the best choice and why. For example, if you were measuring a small length or short distance you would use a ruler- but if you were measuring 300 m then you would use a trundle wheel or possibly a tape measure. When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. Ther may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value doubles, then the other value also doubles If one value doubles, then the other value also doubles The country t		
For example, if you were measuring a small length or short distance you would use a ruler- but if you were measuring 300 m then you would use a ruler- but if you were measuring 300 m then you would use a trundle wheel or possibly a tape measure. When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line o		
When measuring time, we generally use a stopwatch however when recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value is zero, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit	Justify the use of equipment for an	For example, if you were measuring a small length or short distance
recording short time intervals or timing things that move quickly then human riming error can become a problem and a digital timer may be a more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value doubles, then the other value is also zero. This type of relationship can be seen on a graph when: You get a straight line of best fit	investigation	
more accurate choice of equipment. These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value is zero, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		recording short time intervals or timing things that move quickly then
These questions are about understanding information you are given in the question and will often be different to any question you may have seen before. Diagrams These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value doubles, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		
These could contain values that you need to use in an equation or equipment you may need to use in a practical. There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value is zero, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit	Interpret data from diagrams, tables and	These questions are about understanding information you are given in the question and will often be different to any question you may have seen before.
There is no set pattern to this- you will need to apply 'common sense' and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value is zero, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit	graphic	These could contain values that you need to use in an equation or
and think your way through what you are being asked. Tables For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		• • • • • • • •
For simple marks you are looking to describe any relationships you see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		and think your way through what you are being asked.
see- for example as mass increases so does weight. There may be further patterns- for example does weight keep going up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		
up by the same amount? Or do the intervals getter smaller? Bigger? Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		
Sometime you may need to use values in an equation to show a trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. Ph8a Describe a directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		up by the same amount? Or do the intervals getter smaller?
trend or relationship- for example a table could contain values for voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. Ph8a Describe a directly proportional relationship is relationship between two variables that meets the following two rules: • If one value doubles, then the other value also doubles • If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: • You get a straight line of best fit		
voltage and current- but you are asked about resistance. In this case you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. Ph8a Describe a directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		· · · · · · · · · · · · · · · · · · ·
you would need to calculate the resistance values. Graphs Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. Ph8a Describe a directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		
Is the graph linear (straight line) or non-linear (curved)? What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. Ph8a Describe a directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		
What is the trend? As the 'X axis values' increase, what happens to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		,
to the 'Y axis values', does it increase or decrease. Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		Is the graph linear (straight line) or non-linear (curved)?
Is there a maximum or a minimum point? Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		What is the trend? As the 'X axis values' increase, what happens
Sometime you might have to extract data and 'do something with it' perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		·
perhaps use it in an equation or work out a range. A directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		•
Ph8a Describe a directly proportional relationship is relationship between two variables that meets the following two rules: If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit		
 Describe a directly proportional relastionship If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit 	DhQa	
 If one value doubles, then the other value also doubles If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit 		
 If one value is zero, then the other value is also zero This type of relationship can be seen on a graph when: You get a straight line of best fit 		
This type of relationship can be seen on a graph when: • You get a straight line of best fit		
You get a straight line of best fit		·
J J (-1-)		That passes through the origin (0,0)

Separate Forces and their effects Ph280 A force, or more than one force, can cause Describe situations objects to rotate. The turning effect of a force where forces can cause is called a **moment**. rotation The **size of a moment** is determined by the **size** of the force and the distance from the pivot (more correctly the perpendicular distance from the pivot). We describe moments as clockwise v or anticlockwise v. Ph281 We can calculate turning moments using this equation: Recall and use the Moment $(Nm) = force(N) \times distance(perpendicular to the force)$ equation: moment of a (m) force = force × $M = F \times d$ distance normal to the Distance direction of the force The distance must be in m NOT cm: Distance = $50 \div 100$ Distance = 0.5 m $Moment = force \times distance$ A force of 800 N is applied 50 cm $Moment = 800 \times 0.5$ away from the pivot. Moment = **400 Nm** Calculate the size of the moment Ph282 The principle of moments states that: Recall and use the For an object that is in equilibrium principle of moments The <u>sum of</u> the clockwise moments is equal to the <u>sum of</u> the in situations where anticlockwise moments rotational forces are in This means that if a lever is in equilibrium (not rotating) then if we equilibrium calculate all of the clockwise moments and add them together it will be the same size as all the anticlockwise moments added together. $24 \times 0.8 = W \times 4$ $19.2 = W \times 4$

5

add these together.

$$W \times 10 = (15 \times 6) + (12 \times 5)$$

$$W \times 10 = 90 + 60$$

$$W \times 10 = 150$$

$$W = 15 \text{ N}$$

٦	Separate Forces and their effects	
Ph283 Explain how levers and gears transmit the rotational effects of forces	Levers Levers transfer the turning effect of a force- levers make it easier to do work by increasing the distance between pivot and the force. The longer the lever the smaller the force required to give the same moment. Gears Gears are cogs with interlocking teeth, they transmit the rotational effect of a force- connected cogs turn in opposite directions. Cog A is turning clockwise- so cog B is turning anticlockwise. A larger cog will turn slower than a smaller cog. A larger cog has a larger radius than a smaller cog. A larger cog will have a larger turning moment than a smaller cog (because the force is applied further away from the pivot).	
	This is all about ratios , the ratio of teeth for A:B is 10:30 so 1:3 . Cog A rotates 3 times faster (cog B rotates 3 times slower.	
	Cog A rotates 3 times to make cog B turn once.	
	Cog B has a radius 3 time larger (cog A has a radius 3 time smaller). Cog B has a turning moment that is 3 times bigger (cog A has a turning moment that is 3 times smaller).	

Separate Static electricity **Outcomes** Ph284 Static charge can build up on **insulators**. Usually there is no charge Explain how an because the number of protons (positive charge) and electrons (negative insulator can be charge) are equal, so they balance each other out. charged by friction, Static charge is caused by the **moment of electrons**, through friction. through the transfer Friction transfers electrons from one material to another: of electrons The material that **loses electrons** (negative) now has an excess of protons (positive), so will have a positive charge. The material that gains electrons (negative) now has an excess of electrons, so will have a negative charge. Ph285 Static charge can build up on **insulators**. Usually there is no charge Explain how insulating because the number of protons (positive charge) and electrons (negative materials become charge) are equal, so they balance each other out. charged due to the Static charge is caused by the **moment of electrons**, **through friction**. loss or gain of Electrons are negatively charged. electrons Friction transfers electrons from one material to another: The material that **loses electrons** (negative) now has an excess of protons (positive), so will have a positive charge. The material that **gains electrons** (negative) now has an excess of electrons, so will have a negative charge. The diagram shows friction has transferred electrons moving from the cloth to the polythene rod. The Before rubbing cloth is **positive because** it has **lost** electrons and has an excess of protons and the rod is negative because it has gained electrons. Ph286 A charged object is surrounding by an Like Describe the electrostatic field. charges • interactions between When an electrically charged objects is repel like charges and inside the electrostatic field of another unlike charges object, they will both experience a force. Opposite Like charge swill repel. charges attract Opposite charges will attract. These forces get weaker as the objects move away from each other. Ph287 Sparks and shocks Friction between insulators can cause an Explain common electrostatic unbalanced charge to build up- a negative phenomena for charge if electrons are gained or a positive movement of charge if electrons are lost. electrons, inc: shocks If this charged object come **close** enough to **a** from objects, conductor (e.g. a metal door handle) then they can be a spark and lightning & attraction potentially an **electric shock**. by induction Electrons will flow to balance the charge and the object will be discharged (or earthed). Induction A charged object can affect the distribution of electrons within an uncharged object, this is called an induced charge because no charges are actually transferred. If a **negatively charged balloon** is moved close to a wall, then the electrons (negative) within the wall will be repelled, leaving only (b) this side of the wall is positively charge protons (which can't move) on the surface of the wall- an induced positive charge. The negative balloon will now attract to the positive wall because **opposite charges** attract. neutral wall When the balloon is removed it

but the wall will return to being uncharged.

is still negatively charged

Separate Static electricity Outcomes Ph288 One way to discharge a charged object is to **connect it**, through low Explain how earthing resistance wires, to earth/ground. This is called earthing or removes excess **grounding** the object. charge This provides an easy route for electron to flow (towards or away from the charge object) and rebalance the charges. If an object has a negative charge the electrons will flow away **from the object**, towards the earth/ground. If an object has a positive charge the COPPER CABLE electrons will flow towards the object, from the earth/ground. Some objects are connected to the earth/ground in order to prevent dangerous charges building up or to direct charges away from buildings (for example a lightning rod on top of a tall building) Ph289 Static electricity can be used to help when spraying Explain some of the liquids. uses of electrostatic The liquid is charged as it passes out of the nozzle, charges in everyday the **droplets** now all have **the same charge** so situations repel each other so spread out and form a fine mist. The droplets will be attracted to the object being sprayed through induction. If the droplets are **negatively charged** then as they approach the object they will repel the electrons, leaving a **positive**, **induced charge**. The droplets and the leaf now have opposite charges so the droplets are attracted to the leaf. This reduces the amount of insecticide needed as less falls on the ground, and even the underside of the leaves gets covered. This same method can be used when paint spraying, the **object being** painted is given the opposite charge to the paint droplets so that these attract and waste less paint. Ph290 Lightning Describe some of the Friction between particles inside clouds can cause static charge to build dangers of sparking in up. When the charge is large enough, electrons will flow to balance everyday situations the charge. This cause lightning (and thunder). The charge on the bottom of the cloud can induce the opposite charge in the ground charges build up at the top and bottom of the cloud. and any tall objects (buildings and trees). To discharge clouds safely tall buildings, have a 'lightning rod' placed on top of them, **connected to the ground** by thick cables. This provides a **safe route** for the electrons rather than striking the buildings and causing fires. See Ph288 for more detail. Refuelling When refuelling aircraft or large fuel tankers sparks can be dangerous because the fuel vapours are very flammable and easy to ignite- this could cause an **explosion**. The fuel is pumped at high speed and friction can cause a static charge to build up. To FRICTION BETWEEN THE FUEL AND THE PIPES CAUSES. STATIC CHARGE BUILD-UP reduce the risk of a spark a BONDING LINE CARRIES THE CHARGE TO THE EARTH TO REDUCE THE RISK OF SPARKS (AND A FIRE) 'bonding line' is used. This connects the vehicle to the earth so that any charge is immediately earthed.

Outcomes	Separate Static electricity
Ph291	A force field is the volume of space around an object in which another
Define what an	object will experience a force . (See Ph292 for more information on the
electric field is	shape of fields.)
	An electric field is the space around a charged object where other
	charged objects will experience a force (attract or repel, see Ph286
	for more details here.)
Ph292	Point charges
Describe the shape	The electric field around a point charge are straight, radial lines (see the
and direction of the electric field around a	diagram). The lines never cross , they are evenly spaced and they
point charge and	always point away from a positive charge and towards a negative
between parallel	charge.
plates	The closer the field lines are to each other, the stronger the field.
	L L L L L L L L L L L L L L L L L L L
	+
	+ -
	/
	Positive charge Negative charge Stronger negative charge
	+ -> -
	- - - - - - - - - - - - -
	Parallel plates
	The field lined between parallel charge plates are +
	straight lines, evenly spaced and point away from positive towards negative.
	The field between two parallel plates is uniform- this O
	means that it is the same strength and the same
	direction every within the fields.
Ph293	The strength of an electric field can be seen by looking at the field lines-
Relate the electrical	the more densely packed the field lines are, the stronger the
strength of the field to the concentration of	electric field is.
lines	In the diagram below, field B is stronger than field A and field C is
	stronger than field B.
	† * † * *****
	In all three examples the field gets weaker as you move further
	away from the charge- you can see this because the field lines get
Ph294	further away from each other, they are less densely packed. When you look at the field lines surrounding point charges you can see
Explain how the	when you look at the field lines surrounding point charges you can see why opposite charges attract or repel.
concept of an electric	For opposite charges the field lines are acting in the same direction
field helps to explain	and create a force of attraction between the charges.
the phenomena of	For like charges the field lines are acting in opposite direction and
static electricity	create a force of repulsion between the charges.

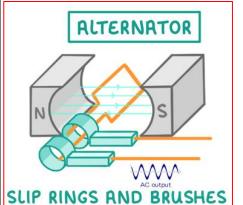
Separate Electromagnetic induction Outcomes Ph295 A changing magnetic field can induce a potential difference HT: Explain how to produce (voltage) in a wire, this will cause a current to flow if the wire is an electric current by the part of a **complete circuit**. (Induce means the potential difference relative movement of a is only there whilst the magnetic field is changing- it's not magnet and a conductor in permanent.) the lab & on a large-scale This is called **electromagnetic induction**. The magnetic field could be electromagnetic movina changing or the wire could be moving through the magnetic field. This can be done by passing a length of wire through a magnetic field, or by coiling the wire up and rotating it inside magnetic field the field, or even by rotating a ammeter magnet inside a coil of wire. This is how power stations work- a turbine is made to spin and the turbine turns a generator making a magnet rotate within a coil of wire and inducing a voltage Ph296 See Ph295 to understand how a potential difference (voltage) can HT: Recall the factors that be induced. affect the size and direction To increase the size of the induced voltage: of an induced potential Increase the strength of the magnetic field difference Move the wire faster Increase the number of coils/turns in the wire To change the direction of the induced voltage > **Swap the polarity** of the magnetic field (switch the poles of the magnet around) Change the direction of the movement This fairly tricky- think about it in three sections: Ph297 HT: Describe how the 1- When a wire is moved through a magnetic field a voltage is magnetic field produced induced that causes a current to flow through the wire. (See opposes the original change Ph295 for more detail.) 2- As **current flows** through the wire it **creates a magnetic** field around the wire (an electromagnet). 3- The magnetic field around the wire will always work to oppose the movement that is creating it. If you were to move a wire **upwards** through a permanent magnetic field then the **magnetic field created by the induced** current would try to pull the wire downwards.

When the "N" Pole of the magnet is moved

towards the coil, end of the coil becomes "N" Pole

Fia 1.B

When the "N" Poles of the magnet is moved away from the coil, end of the coil becomes "S" Pole


Fig 1.A

Outcomes

Separate Electromagnetic induction

Ph298

HT: Explain how electromagnetic induction is used in alternators to generate alternating current (a.c.) A generator has a coil of wire that is made to rotate within a

DYNAMO

magnetic field (in a power station it is a magnet that is made to rotate within a coil of wire).

The rotating coil induces a potential difference (voltage), which causes a current to flow through a complete circuit.

An **alternator** is a generator that produces an **alternating current**.

Copper brushes maintain

contact between the **slip rings** and the external circuit. Each side of the coil stays connected to the same terminal of the circuit.

Ph299

HT: Explain how electromagnetic induction is used in dynamos to generate direct current (d.c.)

A generator has a coil of wire that is made to rotate within a

magnetic field (in a power station it is a magnet that is made to rotate within a coil of wire).

The rotating coil induces a potential difference (voltage), which causes a current to flow through a complete circuit.

A **dynamo** is a generator that produces a **direct current**.

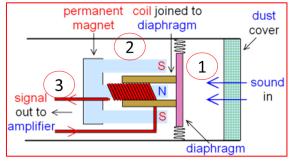
Copper brushes maintain contact between the **commutator** and the external circuit.

The commutator switches over the connections every half term- so the current always flows through the

external circuit in the same direction.

www.

SPLIT RING


COMMUTATOR

Ph300

HT: Explain the action of the microphone in converting sound waves into variations in current A **microphone** works by acting just **like a generator** (see Ph295 for more information on electromagnetic induction).

The microphone uses the movement of sound waves to oscillate (vibrate) a magnet through a coil of wire and induce a voltage, causing current to flow through a complete circuit.

See the diagram and steps below:

- 1- **Sound waves** cause the **diaphragm** to **vibrate back and forth**.
- 2- The vibrating diaphragm is connected to a magnet so the magnet moves back and forth through the coil of wire.
- 3- This movement **induces** a **voltage** and causes an **alternating current to flow** through a **complete circuit**.
- 4- The frequency of the alternating current matches the frequency of the sound waves.

Separate Electromagnetic induction Outcomes Ph301 Loudspeakers and headphones make use of the motor effect. HT: Explain the action of A recap of the motor effect: A current flowing through a wire loudspeakers and causes a **magnetic field** to surround the wire. headphones in converting When a current carrying wire is placed inside a magnetic field, current into sound waves the two magnetic fields interact and the wire feels a force acting on it- this is called the **motor effect**. An alternating current through a coil of wire continuously changes the direction for the magnetic field around the coil- this changes the direction of the force due to the motor effect. This changing force cause a diaphragm to oscillate (vibrate) and produces sound waves. See the diagram and steps below: 1- An alternating current (a.c.) flows through **the coil**, creating a changing magnetic field. 2 3 2- The changing magnetic field interacts with the permanent magnetic field and the coil of wire vibrates back and forth. 3- The moving wire causes the 1 attached cone to vibrate back and forth and produce sound waves. 4- The frequency of the sound waves matches the frequency of the alternating current. The ratio of turns between a primary and secondary coil is the Ph303 HT: Use the turns ratio same as the ratio of the voltages- if the number of turns equation for transformers to doubles, then so does the voltage. calculate either voltage or The relationship can be written as: number of turns: voltageprimary / voltagesecondary = numberprimary / numbersecondary $V_P / V_S = N_P / N_S$ $V_P / V_S = N_P / N_S$ Voltage = potential difference and number = the number of turns. You will be given three numbers- in the text or on the diagram. Substitute in all of the numbers, resolve the side that has two numbers and then re-arrange to find the missing value. A transformer has 40 turns on $V_P / V_S = N_P / N_S$ the primary coil and 200 turns $25 / V_S = 40 / 200$ on the secondary coil. $25 / V_S = 0.2$ A potential difference of 25 V is $25 = 0.2 \times V_S$ applied across the primary coil. $V_S = 25 / 0.2$ Calculate the potential difference $V_S = 125 V$ across the secondary coil. Ph304 There are five different equations that this point refers to: HT: Explain the advantages $V_P / V_S = N_P / N_S$ of power transmission in $V_P \times I_P = V_S \times I_S$ high voltage cables, using $P = E \div t$ the equations from the spec $P = I \times V$ $P = I^2 \times R$ The **first and second equations** tell us about how the voltage and current changes- you can use these equations to show that in a step-up transformer the **voltage** is increased and the current is decreased. You can support that a higher voltage provides a lower current. The **third and fourth equations** can be used to calculate how much **energy is transferred every second** through cables in the national grid- the power transmission. The **fifth equation** is used to work out **how much power is** lost from the cable. The power loss tells us how much energy

current.

is lost every second due to the heating effect of the

two equations and explains why we want higher voltages.

So, less current means less power lost, this links us back to the first

Outcomes Separate Particle model Ph305 Gas inside a flexible container, such as a balloon, will apply a force Explain that gases can be outward onto the surface, there will also be a force inward from the compressed or expanded by air outside. If these pressures are even then the volume will stay pressure changes the same. If the **pressure** of the **air inside** the balloon **increases**, then the volume of the balloon (and the air inside it) will also increase. There will be more force pushing outwards than inwards. If the **pressure** of the **air inside** the balloon decreases, then the volume of the balloon (and the air inside it) will also decrease. There will be less force pushing outwards than inwards. The volume of the gas can also be changed by increasing or decreasing the external pressure. If the external pressure is increased then the **volume** of the gas will decrease and vice-verse. Ph306 Gas particles collide with the surface of a Explain that the pressure of container and **exert a force**. The collisions a gas produces a net force happen in random directions and so do the at right angles to any forces. These forces all add up to produce a surface single net force at right angles to the Ph307 Look at the diagram in the right-Explain the effect of in both cases there are the same changing the volume of a number of particles. gas on the rate at which its The first diagram shows that the particles collide with the volume has increased. The walls of its container and particles will collide with the therefore pressure surface less often- the collisions per second (rate of collisions) will be less. A lower rate of collisions means the pressure will be less. The second diagram shows that the **volume has decreased**, the rate of collisions will increase and the pressure will increase. Ph308 The volume and pressure of a fixed mass of gas at a constant Use the equation: temperature are related by the equation shown below. $P_1 \times V_1 = P_2 \times V_2$ Don't worry about 'fixed mass' and 'constant temperature', this just means that it's the same amount of gas and the temperature hasn't changed. The SI units of **pressure** is the **Pascal (Pa)** and for **volume** its metres cubed (m³). For this formula you can use any units given in the question as long as they are the same on both sides of the equation. Remember we only square or cube a value if the equation tells us to- if it's the units are squared or cubed such as '5 m³' then we do not need to do anything extra to the value- we use '5' in the equation, not '125'. Pressurebefore x Volumebefore = Pressureafter x Volumeafter $\mathbf{P}_1 \times \mathbf{V}_1 = \mathbf{P}_2 \times \mathbf{V}_2$ 45g of gas is stored at a The mass of gas is not important pressure of 500,000 Pa and here- so we just ignore it. has a volume of 0.4 m³. $P_1 \times V_1 = P_2 \times V_2$ The gas is compressed to a $500,000 \times 0.4 = P_2 \times 0.05$ volume of 0.05 m³. $200,000 = P_2 \times 0.05$ Calculate the new pressure of $P_2 = 200,000 / 0.05$ $P_2 = 4,000,000 Pa$ the gas.

Outcomes	Separate Particle model		
Ph309 HT ONLY: Explain why doing work on a gas can increase its temperature, including a bicycle pump	When you use a bike pump the bike pump and the object being inflated can feel warm. This is because you are doing work on the gas, the pump applies a force over a distance and therefore is doing work-transferring energy to the gas molecules. The gas molecules have more kinetic energy and so are moving faster- this increases the temperature of the gas.	FORCE O DISTANCE	

Separate Forces and matter Outcomes Ph310 Atmospheric pressure is caused by air molecules colliding with us, Explain why atmospheric at sea level atmosphere pressure is around 100,000 Pa. pressure varies with height Air pressure (and the pressure above the Earth's surface cause by all fluids) always act Air pressure and density are lower at a high altitude because a shorter with reference to Earth's 'normal' (at right angles) to atmosphere the surface. column of air pushes down The pressure from any fluid depends on the depth of the Air pressure and density are higher at sea level because a taller fluid. When you standing at sea level, you at the bottom of the column of air pushes down atmosphere and the weight of all the molecules above you is pushing down on you. If you **climb a mountain** then you are moving up through the atmosphere and there is **less weight of air above you** pushing down on you- atmospheric pressure is less. The same effect is seen if you move deeper into a body of water, there is more weight of water above you and the pressure increases. When an object is submerged Ph311 Describe the pressure in a into a liquid (for example into fluid as being due to the water) it experiences fluid fluid and atmospheric pressure due to the weight pressure of water above it pushing down on it. It also experiences the air pressure from the weight of air above it pushing down onto the water. So, a diver experiencing 200,000 Pa of water pressure from diving into the sea will also experience 100,000 Pa of air pressure, a total of 300,000 Pa. Ph312 Pressure cause by fluids (any liquids or Recall that the pressure in gases) exert a force 'normal' (at right fluids causes a force normal angles) to any surface. to any surface We tend to represent the total (or net) L force on any surface as a single force arrow.

Outcomes	Separate Forces and matter		
Ph313	Pressure can be thought of as how concentrated a force is- it		
Explain how pressure is	depends on the size of the force and the surface area that the force		
related to force and area,	is applied over.		
using appropriate examples	If the size of the force is increased then the pressure will also		
	increase- that's pretty obvious (h		
	If the surface area is increased	. ,,	
	decrease- because the force is s		
	area decreases then pressure i		
	Think about the image below, in b		
	wight) is the same.	,	
	 In the first diagram the surface area is larger, so the 		
	pressure is smaller.		
	In the second diagram the surface area is smaller, so the		
	pressure is larger.		
	constant F	constant F	
	1111111111		
		smaller A, larger P	
	larger A, smaller P	Silialiei A, larger F	
Ph314	The pressure exerted by a force	can be calculated using the size	
Recall and use the	of the force and the surface are		
equation: $P = F/A$		•	
·	The SI unit of pressure is the pascal (Pa), 1 Pa is equal to 1 N/m ² . In exam questions they will sometime use N/cm ² - this is OK, you		
	just need to check which units they are using and be consistent in		
	your calculation.		
	If the area is in cm ² then the pressure will be N/cm ² , if the area is		
	in m ² , then the area will be in N/n		
	Remember we only square or cube	e a value if the equation tells us	
	to- if it's the units are squared or	cubed such as '5 m2' then we do	
	not need to do anything extra to t	he value- we use `5' in the	
	equation, not `25'.		
	Pressure = force ÷ surface area		
	$\mathbf{P} = \mathbf{F} \div \mathbf{A}$ A man's foot has a surface are $The man's weight is the force he$		
		The man's weight is the force he	
	of 0.02 m ² and he exerts a	applies on the ground.	
	pressure of 21,250 Pa when	$P = F \div A$	
	standing on both feet.	$21,250 = F \div (0.02 \times 2)$	
	Assume his feet both have the same surface area.	$21,250 = F \div 0.04$	
		$F = 21,250 \times 0.04$	
Ph315	Calculate the man's weight. Pressure increases as depth in	F = 850 N The greater the weight	
Describe how pressure in	-		
fluids increases with depth	of particles above an object, the greater the pressure it feels. Density is a measure of how concentrated particles are - the		
and density	Density is a measure of now con	greater the density the more	
•		closely packed the particles are.	
		These two boxes have the same	
	•	volume but the particles are	
		more closely packed in the	
		second box- the density is	
		greater in the second box.	
	Pressure increases as the density of a fluid increases. The		
	weight of the particles above an object will be greater if the		
	particles are more closely packed.		

Outcomes	Separate Force	ces and matter
Ph316	Pressure increases as depth in	
Ph316 HT: Explain why the pressure in liquids varies with density and depth	weight of particles above an object feels. These two boxes have the same v	olume but the particles are more closely packed in the second box- the density is greater in the second box. Pressure increases as the density of a fluid increases. If the density of the fluid is greater then there are more we an object because the ked. This means that the weight
Ph317 HT: Use the equation to	The pressure at any point within	a fluid depends on three values.
calculate the magnitude of pressure in liquids & differences at different depths: $P = h \times \rho \times g$		
	The density of sea water is 1030	
	kg/m³ and shark is swimming 3000 m below the surface. Remember that, on Earth, gravitational field strength 'g' is 10 N/kg. Calculate the water pressure on the shark.	$P = h \times \rho \times g$ $P = 3000 \times 1030 \times 10$ P = 30,900,000 Pa Or 31 MPa
	Calculate the depth of the shark if the pressure is 12,360,000 Pa.	$P = h \times \rho \times g$ $12,360,000 = h \times 1030 \times 10$ $12,360,000 = h \times 10,300$ $h = 12,360,000 \div 10,300$ $h = 1200 m$
Ph318	An object inside a fluid (gas or	liquid) can feel lighter than it
HT: Explain why an object in a fluid is subject to an upwards force (upthrust)	actually is (think about putting a f pool), this is due to a force called The upthrust an object feels due by the difference in pressure al sounds complicated but its actually We know from Ph317 that pressure increases with depths this means that the pressure at the bottom of an object, pushing upwards is greater than the pressure at the top of the object pushing downwards. The difference between these two pressures creates an upwards force called upthrust. The upthrust is always equal to displaced by the object.	to being inside a fluid is caused bove and below an object- it y pretty straight forward. Smallforces on the top Weight of box the weight of fluid that has been the weight of an object, then the

Outcomes	Separate Forces and matter	
Ph319 HT: Relate upthrust to examples including objects that are fully immersed in a fluid (liquid or gas)	See Ph318 for more details on why objects experience upthrust. A quick summary for you though. Pressure from a fluid increases with depth, the bottom of an object is deeper than the top so there is more pressure pushing upwards, an overall force acts upwards- this is called upthrust. The upthrust force is equal to the weight of the fluid that has been displaced (moved out of the way)- this depends on the volume (size) of the object and the density of the fluid. If the upthrust is smaller than the objects weight then the object will still sink. It would 'feel lighter' due to upthrust but would still sink. The resultant force pulling the object down is smaller than it would be without the upthrust- the object 'feels' heavier if we take it out of the fluid.	
Ph320 HT: Relate upthrust to examples including objects that are partially immersed in a liquid	See Ph318 for more details on why objects experience upthrust. A quick summary for you though. Pressure from a fluid increases with depth, the bottom of an object is deeper than the top so there is more pressure pushing upwards, an overall force acts upwards- this is called upthrust. The upthrust force is equal to the weight of the fluid that has been displaced (moved out of the way)- this depends on the	
Ph321	volume (size) of the object and the density of the fluid. If the upthrust is equal than the objects weight then the object will still rise up within the fluid (think about holding a football under water and letting go of it). The resultant force acting on the object is zero- the upthrust is equal to the weight. Some objects that float have to sit deeper in the water- they need to displace more fluid to make the upthrust (weight of fluid displaced) equal to the weight of the object. If the density of the fluid is greater then less fluid needs to be displaced before the upthrust (weight of fluid displaced) is equal to the weight of the object.	
HT: Recall that the upthrust is equal to the weight of fluid displaced	Upthrust force is equal to the weight of the fluid that has been displaced (moved out of the way)- this depends on the volume (size) of the object and the density of the fluid. A larger object will obviously displace more fluid- a greater weight of fluid means more upthrust. Water has a greater density than air. An object in air experiences an upthrust due to the weight of air displaced- this will be relatively small. The same object placed in water, displaces the same volume of water, but this will have a much greater weight so the upthrust will be much greater.	

Outcomes	Separate Forces and matter
Ph322	An object placed into a fluid will experience upthrust due to the
HT: Explain the factors that	weight of the fluid it displaces (this depends on the volume of
influence whether an object	the object and the density of the fluid).
will float or sink	If upthrust is equal to weight, the object will float.
	If upthrust is less than weight, the object will sink.
	If upthrust is greater than weight, the object will rise out of
	the water and displace less water until upthrust and weight
	are balanced- it will then float.