- **6** This question is about waves in the electromagnetic (e.m.) spectrum.
 - (a) The potential danger associated with the waves of the e.m. spectrum increases as

(1)

- A frequency decreases
- **B** frequency increases
- C velocity decreases
- **D** velocity increases
- (b) (i) A microwave oven uses waves of frequency 2.45 GHz.

Calculate the wavelength of the microwaves.

The velocity of light is 3.00×10^8 m/s.

(3)

wavelength =m

(ii) The microwave oven is 55% efficient and transfers 42 000 J of energy to some food when it is heated.

Calculate the total amount of energy that must be supplied to the oven.

(3)

*(c) X-rays and radio waves are part of the electromagnetic spectrum and have different uses. These radiations are produced in different ways. X-rays are emitted when electrons within an atom go through energy changes. Radiowaves are produced by electrons in circuits. Compare X-rays with radio waves. Your answer should refer to the uses of both types of radiation the different ways that electrons are involved in producing X-rays and radio waves. (6)

TOTAL FOR PAPER = 60 MARKS

(Total for Question 6 = 13 marks)

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 (a) Figure 1 shows part of a wave.

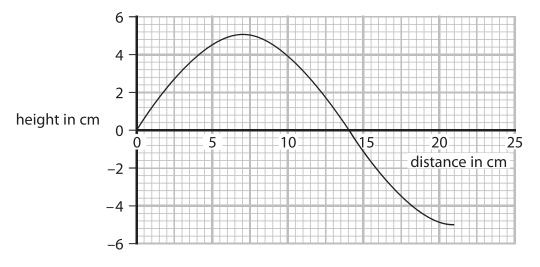


Figure 1

Use data from Figure 1 to calculate the wavelength of the wave.

(2)

(b) (i) Figure 2 shows a student sitting on the shore of a lake watching ripples on the surface of the water moving past a toy boat.

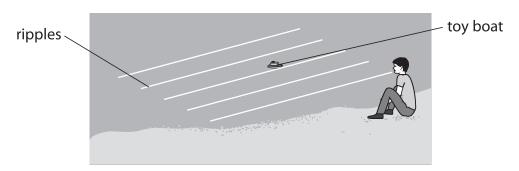


Figure 2

The student has a stopwatch.

Describe how the student could determine the frequency of the ripples on the lake.

(3)

(ii) The speed of a water wave is $1.5\,\mathrm{m/s}$.

The frequency of the wave is 0.70 Hz.

Calculate the wavelength of this wave.

Use the equation

$$v = f \times \lambda$$

(2)

wavelength = m

(iii) Water waves are transverse waves. Describe the difference between transverse waves and longitudinal waves.	
Describe the difference between transverse waves and longitudinal waves.	(2)
(Total for Question 1 = 9 n	narks)

3 A student is investigating the refraction of light.

Figure 4 shows part of the apparatus and the angles to be measured.

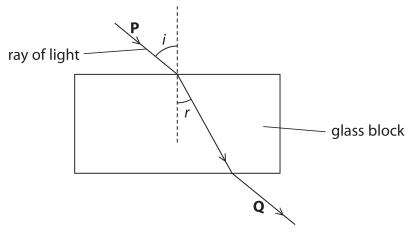


Figure 4

The student measures angle r for several different values of angle i.

Figure 5 shows the student's results.

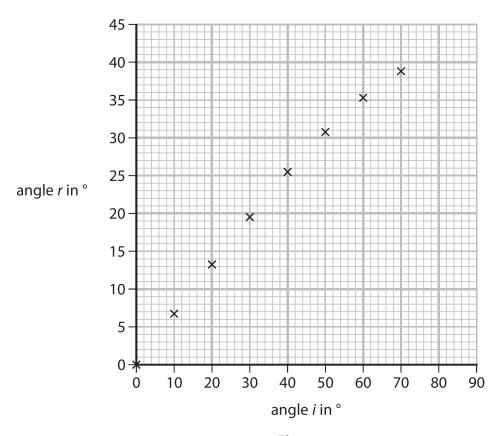


Figure 5

(a) (i) On the graph in Figure 5, draw the best fit curve.

(1)

(ii) Use the graph in Figure 5 to estimate the value of angle r when angle i	is 80°.
angle <i>r</i> =	c
(iii) Describe how angle r changes with angle i for the results shown on the	e graph
in Figure 5.	(2)

(b) In Figure 4, the frequency of the light remains the same in glass as in air.

Which row of the table describes what happens to the wave velocity and to the wavelength of the light when the light travels from air to glass?

(1)

	wave velocity	wavelength
A	decreases	decreases
В	decreases	increases
C	increases	decreases
D	increases	increases
	В	A decreases B decreases C increases

(3)

(c) In Figure 6, only refraction of light is shown.

Other things happen to the light as it travels from **P** to **Q**.

The intensity (brightness) of the light at **Q** is less than the intensity of the light at **P**.

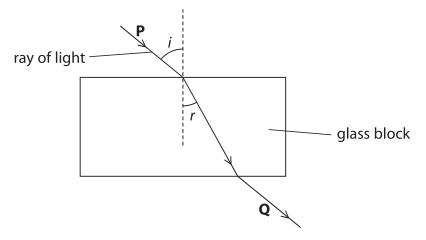
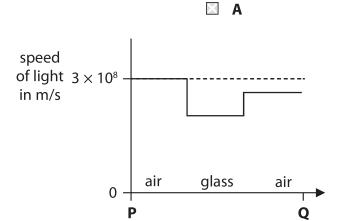
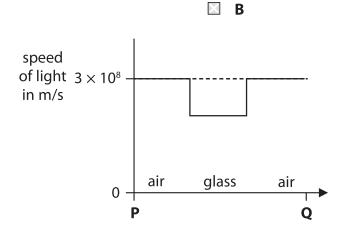
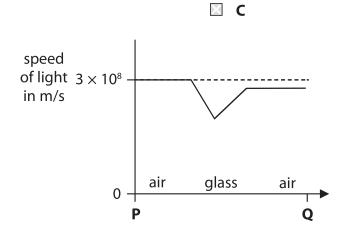
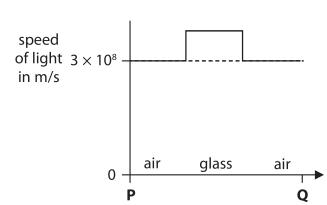


Figure 6


Explain the decrease in intensity as the light travels from P to Q.


You may add to Figure 6 to help your answer.


	 	 	 	 	•••••	 •••••	 	 		 		 	
•••••	 	 	 	 		 	 	 	•••••	 		 	
	 	 	 	 	•••••	 •••••	 	 		 		 	
•••••	 	 	 	 	•••••	 •••••	 	 	•••••	 	•••••	 	


(d) Which of these sketch graphs represents the speed of light as it travels from **P** to **Q**?

(1)

■ D

(Total for Question 3 = 9 marks)

Question Number	Answer	Mark
6a	 B frequency increases A is not correct because the danger does not increase with decreasing frequency C is not correct because all waves in the e-m spectrum have the same velocity D is not correct because all waves in the e-m spectrum have the same velocity 	(1) AO1

Question Number	Answer	Additional guidance	Mark
6b(i)		allow substitution and rearrangement in either order	(3) AO2
	selection and substitution (1) $3(.00) \times 10^8 = 2.45 \times 10^9 \times \lambda$	$2.45 (\times 10^9) = \frac{3(.00) \times 10^8}{\lambda}$	
	rearrangement (1)	$\lambda = \frac{V}{f}$	
	$(\lambda=) \frac{3(.00)\times10^8}{2.45 (\times10^9)}$ evaluation (1) 0.12 (m)	f f	
	S.12 (11)	accept 0.122(m)	
		power of ten error gains 2 marks award full marks for the	
		correct answer without working	

Question	Answer	Additional	Mark
Number		guidance	
6b(ii)	selection and substitution (1)	allow substitution and rearrangement in either order	(3) AO2
	$(0.)55 = \frac{42\ 000}{\text{total energy supplied (to device)}}$	$(0.)55 = \frac{42\ 000}{x}$	
	rearrangement (1) (total energy supplied to device=) $\frac{42\ 000}{(0.)55}$		
	evaluation (1) 76 000(J)	accept any value that rounds to 76 000(J)	
		760/764/763(J) gains 2 marks	
		any other power of ten error gains 1 mark	
		award full marks for the correct answer without working	

Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 Comparison X-rays: high frequency / short wavelength / ionising / high energy Radio waves: low frequency / long wavelength / not ionising / low energy X ray are used in medical diagnosis, to find broken bones, damage to lungs radiotherapy	(6) AO1
X-rays: high frequency / short wavelength / ionising / high energy Radio waves: low frequency / long wavelength / not ionising / low energy X ray are used in medical diagnosis, to find broken bones, damage to lungs radiotherapy	
 in medical diagnosis, to find broken bones, damage to lungs radiotherapy 	
treatment of cancerairport securityrevealing counterfeit art	
X-rays are emitted when electrons change energy levels because	
R	 when the electrons return to a lower energy level the electrons lose energy as radiation. the electrons need to lose a large amount of energy (so that) they emit x-ray radiation of high energy/frequency adio waves are used broadcasting television broadcasting radio communications

Radio-waves are emitted when • electrons oscillate in electrical circuits
oscillations are
 current (flow of electrons) that continually change direction current flows up and down in a (transmitting) aerial alternating current (AC) this generates radio waves in the air around the aerial the frequency of the radio waves corresponds to the oscillation frequency
N.B. No credit is given for: Electrons within an atom go through energy changes OR Radio waves are produced in electrons in circuits These phrases are in the stem of the question

Mark 0 1-2	No rewardable material. Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1)				
1-2	which is inaccurate. Understanding of scientific, enquiry,				
	which is inaccurate. Understanding of scientific, enquir techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and with significant gaps. (AO1)				
3-4	Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps				
5-6	missing. (AO1) Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) Presents a description that has a well-developed structure				

Level	Mark	Additional Guidance	General additional guidance – the decisions within levels e.g. – At each level as well as content, the scientific coherency of what is stated will help place the answer at the top or bottom of that level
	0	No rewardable material	
Level 1	1-2	Additional guidance Elements of physics present i.e. isolated knowledge of principles, two unconnected statements	Possible candidate response any use of X rays any use of radio waves
			any comparison electrons are around the nucleus a current is electrons (moving) electrons oscillate
Level 2	3-4	Additional guidance Some knowledge of principles with limited detail on use and a comparison or process	Possible candidate response any use of x-rays and of radio waves with limited detail and one of: a comparison or electrons lose energy to emit X-rays or electrons oscillate in circuits
Level 3	5-6	Additional guidance Detailed knowledge of principles on use with logical connections made about one process	Possible candidate response Use of X-rays and of radio waves with detail and one of: electrons lose energy to change to lower energy level and emit energy as X-rays or electrons oscillate in circuit and currents move up and down in aerials to generate radio waves

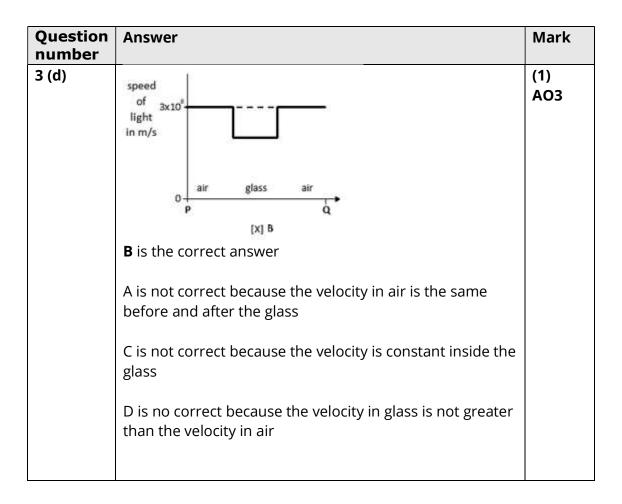
*there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

Question number	Answer	Additional guidance	Mark
1(a)	uses data taken from x axis (1)		(2) AO3
	28(cm) (1)		
		award full marks for correct answer without working	

Question number	Answer	Additional guidance	Mark
1 b(i)	a description to include count the number of waves(1)		(3) AO1
	(arriving/passing a point) in a specific time(1)	ignore in one second	
	use frequency = number of waves time (1)	count the number of waves in one second scores 2 marks (MP1 and MP3) find the time between one wave and the next scores 2 marks (MP1 and MP2)	

Question number	Answer	Additional guidance	Mark
1 b(ii)	substitution (1) $1.5 = 0.7 \times \lambda$	1.5 0.7	(2) AO2
		allow <u>0.7</u> 1.5 for 1 mark	
	rearrangement and evaluation 2.1(4) m	award full marks for correct answer without working. λ = v/f scores 1 mark	

Question number	Answer	Additional guidance	Mark
1 b(iii)	A description to include:		(2) AO1
	mention of oscillations/vibrations (1)	up and down OR side to side (movements) OR back and forth	
	transverse – (oscillations) perpendicular to direction of wave (travel) (1) OR longitudinal - (oscillations) in		
	same direction as wave (travel) (1)		
		transverse movement up and down but longitudinal is side to side (1 mark	
		to side (1 mark only)	


Question number	Answer	Additional guidance	Mark
3 (a)(i)	curve through origin, through all points – by eye (1)	40- 35- 30- 25- 20- 15- 10- 5- 0 10 20 30 40 50 60 70 80 90 angle / in ° Figure 6	(1) AO1

Question number	Answer	Additional guidance	Mark
3 (a)(ii)	(r =) 42(°) ± 2(°) (1)	ECF their graph	(1) AO3

Question number	Answer	Additional guidance	Mark
3 (a)(iii)	Description to include two from:		(2)
	$m{r}$ increases as $m{i}$ increases (1)	r increases as i	AO3
		increases	
	(but) not in proportion (1)	(but) not in even steps/not straight line/non- linear/gradient changes	
	increase in ${m r}$ becomes less (for	_	
	same increase in $m{i}$) (1)	r always less than i	

Question number	Answer			Mark
3 (b)		wave velocity	wavelength	(1)
	[x] A	decreases	decreases	AO1
	increase	ect because the waveler ot correct because the w		

Question number	Answer	Additional guidance	Mark
3 (c)	Explanation linking three from:		(3) AO2
	(some) light is <u>reflected</u> (1)		
	(at) the top edge (1)	in the air	
	(some) light is <u>absorbed</u> (1)		
	by the glass (1)	in the (glass) block	
		credit responses in terms of attenuation/ dispersion/reflection at the second face/spreading out	

Total for Question 3H = 9 marks)

If you're taking **GCSE (9–1) Combined Science** or **GCSE (9–1) Physics**, you will need these equations:

HT = higher tier

	distance travelled = average speed \times time	
	acceleration = change in velocity ÷ time taken	$a = \frac{(v - u)}{t}$
	force = $mass \times acceleration$	$F = m \times a$
	weight = $mass \times gravitational$ field strength	$W = m \times g$
нт	momentum = mass × velocity	$p = m \times v$
	change in gravitational potential energy = mass \times gravitational field strength \times change in vertical height	$\Delta GPE = m \times g \times \Delta h$
	kinetic energy = $1/2 \times \text{mass} \times (\text{speed})^2$	$KE = \frac{1}{2} \times m \times v^2$
	efficiency = $\frac{\text{(useful energy transferred by the device)}}{\text{(total energy supplied to the device)}}$	
	wave speed = frequency \times wavelength	$v = f \times \lambda$
	wave speed = distance ÷ time	$v = \frac{x}{t}$
	work done = force \times distance moved in the direction of the force	$E = F \times d$
	power = work done ÷ time taken	$P = \frac{E}{t}$
	energy transferred = charge moved \times potential difference	$E = Q \times V$
	$charge = current \times time$	$Q = I \times t$
	potential difference = current \times resistance	$V = I \times R$
	power = energy transferred ÷ time taken	$P = \frac{E}{t}$
	electrical power = current \times potential difference	$P = I \times V$
	electrical power = $(current)^2 \times resistance$	$P = I^2 \times R$
	density = mass ÷ volume	$ \rho = \frac{m}{V} $

	force exerted on a spring = spring constant \times extension	$F = k \times x$
	$(\text{final velocity})^2 - (\text{initial velocity})^2 = 2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 \times a \times x$
нт	force = change in momentum ÷ time	$F = \frac{(mv - mu)}{t}$
	energy transferred = current \times potential difference \times time	$E = I \times V \times t$
нт	force on a conductor at right angles to a magnetic field carrying a current = magnetic flux density \times current \times length	$F = B \times I \times l$
	For transformers with 100% efficiency, potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil	$V_{P} \times I_{P} = V_{S} \times I_{S}$
	change in thermal energy = mass \times specific heat capacity \times change in temperature	$\Delta Q = m \times c \times \Delta \theta$
	thermal energy for a change of state = mass \times specific latent heat	$Q = m \times L$
	energy transferred in stretching = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E = \frac{1}{2} \times k \times x^2$

If you're taking **GCSE (9–1) Physics**, you also need these extra equations:

	moment of a force = force \times distance normal to the direction of the force	
	pressure = force normal to surface ÷ area of surface	
нт	$\frac{potential\ difference\ across\ primary\ coil}{potential\ difference\ across\ secondary\ coil} = \frac{number\ of\ turns\ in\ primary\ coil}{number\ of\ turns\ in\ secondary\ coil}$	$\frac{V_{\rm p}}{V_{\rm S}} = \frac{N_{\rm p}}{N_{\rm S}}$
	to calculate pressure or volume for gases of fixed mass at constant temperature	$P_1 \times V_1 = P_2 \times V_2$
нт	pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength	$P = h \times \rho \times g$

END OF EQUATION LIST