Please check the examination details below before entering your candidate information				
Candidate surname		Other names		
Centre Number Candidate No Pearson Edexcel Level		el 2 GCSE (9–1)		
Tuesday 13 June 20	23			
Morning (Time: 1 hour 45 minutes)	Paper reference	1CH0/2H		
Chemistry PAPER 2				
		Higher Tier		
You must have: Calculator, ruler		Total Marks		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- There is a periodic table on the back cover of the paper.

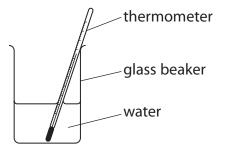
Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .


1 Butanol is a liquid fuel.

A student investigated the mass of butanol needed to increase the temperature of 100 cm³ of water by 1 °C.

The student used the following method.

- **step 1** add 100 cm³ of water to a beaker
- **step 2** measure the mass of a spirit burner containing butanol
- **step 3** measure the initial temperature of the water in the beaker
- **step 4** place the spirit burner containing butanol under the beaker of water
- **step 5** light the wick of the burner and start to stir the water with the thermometer
- step 6 stop heating the water when the temperature of the water has increased by 30 ℃
- **step 7** remeasure the mass of the spirit burner containing butanol.

Figure 1 shows the apparatus used.

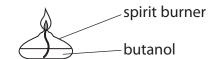


Figure 1

(a) Figure 2 shows the student's results.

mass of spirit burner	mass of spirit burner
at start in g	at end in g
134.67	133.59

Figure 2

	n the student's investigation, the temperature of the 100 cm ³ water increased by 30 °C.	
	Calculate the mass of butanol needed to increase the temperature of the 100 cm ³ water by 1°C.	
		(2)
	mass of butanol =	
	The student investigated the effect of changing the fuel on the mass of fuel needed to heat the water.	
	The student used an identical spirit burner filled with pentanol, another iquid fuel.	
C	Give two variables that the student should keep the same in this investigation.	(2)
V	variable 1	
V	variable 2	
	Suggest two improvements that the student could make to their apparatus so that more of the heat energy is transferred to the water.	(2)
iı	mprovement 1	(2)
iı	mprovement 2	
	(Total for Question 1 = 6 ma	rkc)

A student used the apparatus shown in Figure 3 to investigate the reaction between marble chips and dilute hydrochloric acid.

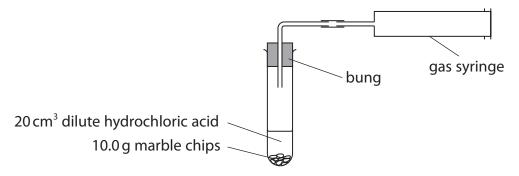
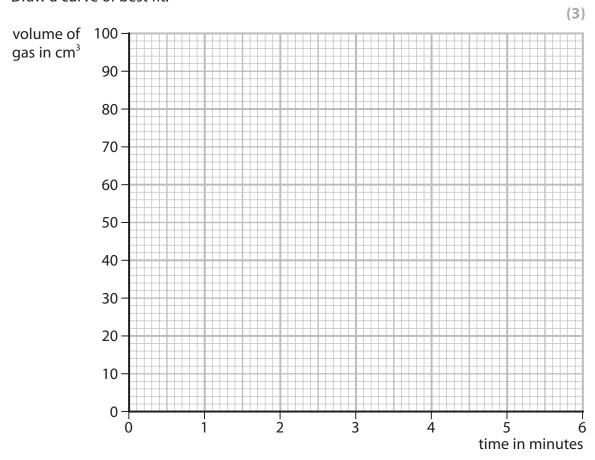


Figure 3


The student recorded the volume of gas every minute as shown in Figure 4.

time in minutes	0	1	2	3	4	5	6
volume of gas in cm ³	0	52	78	91	97	100	100

Figure 4

(a) On the grid, plot the results shown in Figure 4.

Draw a curve of best fit.

(b) Rate of reaction can be calculated using

rate of reaction =
$$\frac{\text{volume of gas produced in 1 minute}}{\text{1 minute}}$$

Figure 5 shows the rates of reaction calculated from the results of this experiment.

The rate of reaction for the time interval 2 to 3 minutes is missing.

time interval	0 to 1	1 to 2	2 to 3	3 to 4	4 to 5
	minute	minutes	minutes	minutes	minutes
rate of reaction in cm³ min ⁻¹	52	26		6	3

Figure 5

(i) Calculate the rate of reaction for the time interval 2 to 3 minutes.

(1)

rate of reaction =cm³ min⁻¹

(ii) State and explain what happens to the rate of reaction as the acid reacts with the marble chips in this experiment.

(3)

(c) The student repeated the experiment using the same volume of acid and the same mass of marble chips but used smaller marble chips.

All other conditions remained the same.

The student found that the reaction with the smaller marble chips was faster to start with but produced the same volume of gas.

Using this information, draw a line on the grid to show the results for the reaction with the smaller marble chips.

Label this line 'C'.

(2)

(Total for Question 2 = 9 marks)

3 Figure 6 shows some information about the group 1 metals.

group 1 metal	atomic number	relative atomic mass
lithium	3	7
sodium	11	23
potassium	19	39
rubidium	37	85
caesium	55	133

Figure 6

(a) Explain, in terms of their electronic configurations, why these metals are placed in group 1 of the periodic table.

(2)

(b) Which row shows two correct properties of group 1 metals?

(1)

- ⊠ A
- **В**
- **⊠** C
- \boxtimes D

properties of group 1 metals			
compounds are white in color	ur high density		
low melting points	compounds are blue in colour		
soft enough to be cut by a kni	fe low melting points		
high density	conduct electricity		

(c) The word equation for the reaction of potassium with bromine is	
potassium + bromine → potassium bromide	
Add the missing state symbol and balance the equation for this reaction.	(2)
K($K(g) \rightarrow KBr(s)$	
(d) A sample of potassium contains three isotopes, potassium-39, potassium-40 and potassium-41.	
(i) Explain the meaning of the term isotopes .	(2)
(ii) This sample of potassium contains	
93.25% potassium-39	
0.02% potassium-40	
6.73% potassium-41	
Calculate the relative atomic mass of this sample of potassium.	(2)
relative atomic mass =	
(Total for Question 3 = 9 ma	arks)

4 (a) Atoms, molecules, nanoparticles and protons are types of particle.

List these four types of particle in order of size from smallest to largest.

(2)

(b) Nanoparticles have a large surface area to volume ratio.

Figure 7 shows a cube-shaped nanoparticle with sides of 90 nm.

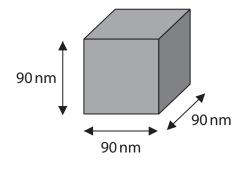


Figure 7

(i) What is 90 nm in metres?

(1)

- **A** 9.0×10^{-5}
- **B** 9.0×10^{-6}
- \bigcirc **C** 9.0 × 10⁻⁸
- \square **D** 9.0 × 10⁻¹¹
- (ii) Calculate the simplest surface area to volume ratio for the nanoparticle in Figure 7.

Show your working.

(3)

surface area to volume ratio = 1:

(c) Figure 8 shows the structure of a molecule of tetrafluoroethene.

Figure 8

(i) Tetrafluoroethene can form the polymer poly(tetrafluoroethene).

Draw a diagram to show the structure of the repeating unit of this polymer.

(2)

(ii) Poly(tetrafluoroethene) is also known as Teflon™.

State one use of poly(tetrafluoroethene) and explain how one of its properties makes it suitable for that use.

(3)

use

explanation

(Total for Question 4 = 11 marks)

(1)

5 (a) Figure 9 shows the percentage of three gases, **X**, **Y** and **Z**, in the Earth's early atmosphere.

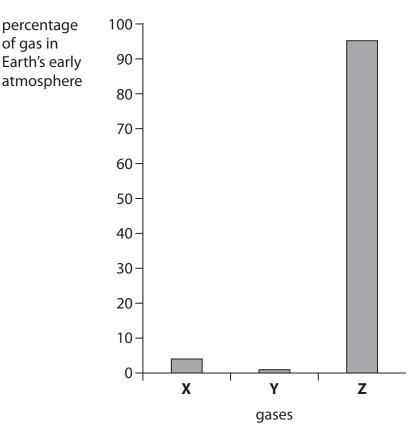


Figure 9

What is the name of gas **Z**?

- A argon
- **B** carbon dioxide
- **C** nitrogen
- **D** oxygen

(b)	It is thought that small quantities of hydrogen sulfide, H_2S , were also in the Earth's early atmosphere.	
	Draw the dot and cross diagram for a molecule of hydrogen sulfide.	
	Show outer electrons only.	(-)
		(2)
(c)	Acid rain is caused by some pollutant gases present in the atmosphere.	
	Explain how impurities in fossil fuels can result in acid rain.	
		(3)

(d) A student investigates the effect of acid rain on cress plants.

The student uses this method.

- step 1 grow 20 cress plants in each of two dishes, A and B
- **step 2** water the cress plants in dish **A** with 10 cm³ of dilute hydrochloric acid with a pH of 2
- step 3 water the cress plants in dish B with 10 cm³ of pure water with a pH of 7
- **step 4** repeat steps 2 and 3 every day for one week
- **step 5** count how many plants are still alive after one week.
- (i) State what piece of equipment the student could use to measure the pH of each liquid.

(1)

(ii) Explain **one** improvement that the student could make to the method to make the results more valid.

(2)

(Total for Question 5 = 9 marks)

BLANK PAGE

6 Chlorine gas can be prepared by reacting concentrated hydrochloric acid with solid potassium manganate(VII).

Figure 10 shows the apparatus used.

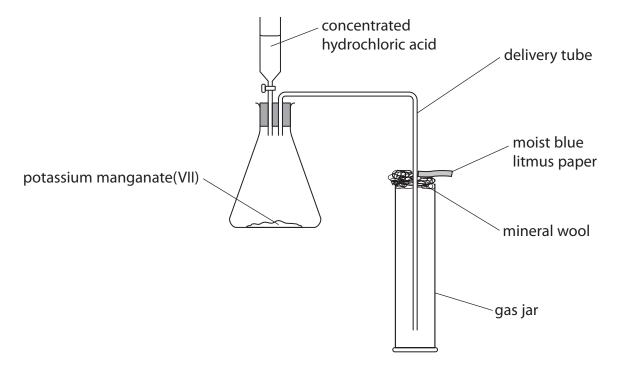


Figure 10

(a) Figure 11 shows the hazard symbols for concentrated hydrochloric acid, potassium manganate(VII) and chlorine gas.

substance	hazard symbol
concentrated hydrochloric acid	
potassium manganate(VII)	
chlorine gas	

Figure 11

Use the information in Figure 11 to help you answer (a)(i) and (a)(ii).

(i) What	are the hazards associated with potassium manganate(VII)?	(1)
⊠ A	flammable, harmful and corrosive	(1)
⊠ B	flammable, toxic and hazardous to the environment	
⊠ C	oxidising, harmful and hazardous to the environment	
⊠ D	oxidising, toxic and corrosive	
	n one precaution that should be taken when preparing the sample of ne gas. ution	(2)
reasol	n	
(b) State the	purpose of the delivery tube.	(1)
(c) Suggest v	why damp blue litmus is placed at the top of the gas jar.	(2)
to form m	ction, potassium manganate(VII), KMnO₄, reacts with hydrochloric acid nanganese chloride, MnCl₂, potassium chloride, chlorine and water. balanced equation for the reaction.	(3)
	(Total for Question 6 = 9 ma	rks)

BLANK PAGE

7 Figure 12 shows the structure of the molecules of three organic compounds.

propene	propanoic acid	ethanol
H $C=C$ H H H	H H O O H H H H O O H	H H H—C—C—O—H H H

Figure 12

(a) (i) Each molecule in Figure 12 contains a different functional group.

Circle the alkene functional group in **propene**.

(1)

(ii) Propene reacts with bromine water.

Complete the equation for the reaction of propene with bromine by drawing the structure of a molecule of the product.

(2)

propene

bromine

product

(iii) Propanoic acid reacts with calcium carbonate, CaCO₃, to form calcium propanoate, Ca(C₂H₅COO)₂, and two other products.

Name the **two** other products.

(2)

product 1

product 2

*(b) Glucose, $C_6H_{12}O_6$, is a carbohydrate.	
A dilute solution of ethanol can be produced from glucose by fermentation	on.
The dilute solution of ethanol can then be processed to form a concentra solution of ethanol.	
Describe how the fermentation of glucose is carried out and how the dilusolution of ethanol produced can then be processed to form a concentra solution of ethanol.	ute ted
You may include diagrams in your answer.	(4)
	(6)

- 8 Ammonia can be produced from the reaction of hydrogen with nitrogen.
 - (a) What is the percentage by mass of nitrogen in ammonia, NH_3 ? (relative atomic masses: H = 1.0, N = 14)

(1)

- A 18%
- **■ B** 42%
- **■ C** 51%
- **D** 82%
- (b) The reaction between hydrogen and nitrogen is exothermic.

Figure 13 shows the reaction profile of this exothermic reaction.

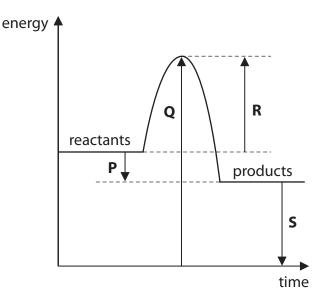


Figure 13

(i) Which arrow represents the activation energy for the reaction?

(1)

- A arrow P
- B arrow Q
- C arrow R
- **D** arrow **S**

(ii)	Describe what the reaction profile shows about the energy involved in
	bond breaking and bond making in this reaction.

(2)

(iii) Figure 14 shows the energies of some bonds.

bond	bond energy in kJ mol ⁻¹
N≡N	944
Н—Н	436
H—N	388

Figure 14

The equation for the reaction between nitrogen and hydrogen to form ammonia is

$$N \equiv N + 3 H - H \rightarrow 2 \begin{array}{c} H \\ N \end{array}$$

Calculate the energy change, in kJ mol⁻¹, for this reaction.

(4)

energy change =kJ mol⁻¹

(c)	Ammonia, NH_3 , and silicon dioxide, SiO_2 , are both compounds that are made of two non-metallic elements.	
	Ammonia has a boiling point of –33 °C. Silicon dioxide has a boiling point of 2230 °C.	
	Explain why the boiling points of ammonia and silicon dioxide are so different.	
	Explain why the boiling points of ammonia and sincon dioxide are so different.	(3)
	(Total for Question 8 = 11 ma	rks)

BLANK PAGE

9 Crude oil is a mixture of hydrocarbons.

Crude oil can be separated into useful fractions by the process of fractional distillation in a fractionating column.

(a) Figure 15 shows a fractionating column, the fractions obtained and the trend in viscosity of the fractions.

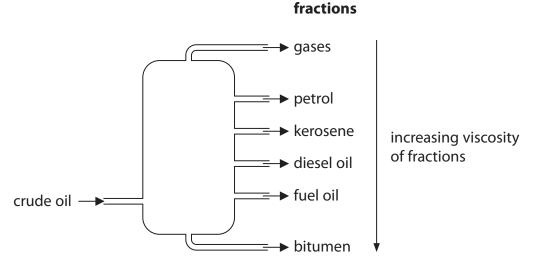


Figure 15

(i) Which row shows the correct uses for bitumen, diesel oil and fuel oil?

(1)

(2)

		bitumen	diesel oil	fuel oil				
X	A	fuel for large ships	surfacing roads	fuel for trains				
X	В	fuel for large ships	fuel for trains	surfacing roads				
X	C	surfacing roads	fuel for trains	fuel for large ships				
X	D	surfacing roads	fuel for large ships	fuel for trains				

ii) Ex	plain the trend	in the viscosity	of the fractions.	
--------	-----------------	------------------	-------------------	--

(b) Hydrocarbon \mathbf{X} was cracked to form one molecule of hexane, C_6H_{14} , and one molecule of alkene \mathbf{Y} .

$$\boldsymbol{X} \ \rightarrow \ C_6 H_{14} \ + \ \boldsymbol{Y}$$

The relative formula mass of Y is 56.

The empirical formula of \mathbf{Y} is CH_2 .

Deduce the molecular formula of hydrocarbon X.

Show your working.

(relative atomic masses: H = 1.0, C = 12)

(4)

molecular formula of **X** =

*(c) Large quantities of methane are used as a fuel.

Figure 16 shows a Bunsen burner.

Methane can be used as fuel for the Bunsen burner.

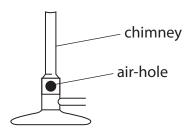


Figure 16

The air-hole on the chimney of the Bunsen burner can be opened and closed.

Explain the effect of opening and closing the air-hole of the Bunsen burner on the products of combustion of methane and the harm that using large quantities of methane as a fuel can cause.

(6)
•••••

10 (a) A student carried out a flame test on a sample of solid potassium chloride. The student followed this method. **step 1** dip a dry wooden splint into water **step 2** then dip the wooden splint into the sample of potassium chloride **step 3** hold the wooden splint in a roaring Bunsen burner flame **step 4** observe the colour seen in the flame. (i) The student made the following observation and conclusion. 'I saw that the flame colour was yellow so the sample must contain sodium ions'. Due to the way the student carried out the experiment, this is not a valid conclusion. Explain one improvement that the student could make to their method to obtain a valid conclusion. (2)improvement reason (ii) What colour should the student have seen in the flame if the test had been carried out correctly? (1) X A blue-green X **B** lilac **C** orange-red X **D** red

De	escribe the test for chloride ions.	(3)
		(3)
c) (i)	A student was asked to test a sample of aluminium sulfate for sulfate ions.	
	The student needed $25\mathrm{cm^3}$ of barium chloride solution of concentration $83\mathrm{gdm^{-3}}$ for the test.	
	Calculate the mass of barium chloride that must be dissolved in water to make 25 cm ³ of solution of this concentration.	
	Give your answer to 2 significant figures.	(3)
		(3)
	mass of barium chloride =	
(ii)	When the barium chloride solution was added to the aluminium sulfate solution, a precipitate was formed.	
	The balanced equation for this reaction is	
	$3BaCl_2(aq) + Al_2(SO_4)_3(aq) \rightarrow 3BaSO_4(s) + 2AlCl_3(aq)$	
	Write the ionic equation for this reaction.	
	write the forme equation for this reaction.	(3)
	(Total for Question 10 = 12 ma	rks)
	TOTAL FOR PAPER = 100 MAR	1K5

BLANK PAGE

BLANK PAGE

The periodic table of the elements

0	4 He helium 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86
7		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85
9		16 O 0xygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellunium 52	[209] Po polonium 84
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82
က		11 B boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 TI thallium 81
	·			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79
				59 Ni nickel 28	106 Pd palladium 46	195 Pt platinum 78
				59 Co cobatt 27	103 Rh rhodium 45	192 Ir iridium 77
	1 H hydrogen 1			56 Fe iron 26	101 Ru ruthenium 44	190 0s osmium 76
				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75
		mass bol number		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74
	Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73
		relativ atc atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafinium 72
				45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57
2		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	88 Sr strontium 38	137 Ba barium 56
_		7 Li lithium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55

^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Mark Scheme (Results)

Summer 2023

Pearson Edexcel GCSE In Chemistry (1CH0) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Publications Code 1CH0_2H_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.

Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.

When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

	ssment ective	Command Word							
Strand	Element	Describe	Explain						
AO1		An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required						
AO2		An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)						
AO3	1a and 1b	An answer that combines points of interpretation/evaluation to provide a logical description							
AO3	2a and 2b		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning						
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment							
AO3	3b		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning						

2306 1CH0_2H Paper 2H

Question number	Answer	Additional guidance	Mark
1(a)	an answer of 0.036 / 0.04 with or without working scores 2 marks		(2) AO2-1
	134.67 - 133.59 = 1.08 (1)	1.08 with no working scores 1 mark	
	$\frac{(1.08)}{30} = 0.036 (1)$	allow ECF for MP2 if all 3 pieces of data have been used in MP1	

Question number	Answer		Mark
1(b)	any two from :distance from beaker to {flame/wick/burner} (1)		(2) AO1-2
	size of wick (1)	allow type of wick	
	• volume of water (1)	allow amount or mass for volume	
	temperature increase of water (1)	allow initial temperature of water	
	• {size/shape/type} of beaker (1)		
		ignore time ignore same person ignore volume/mass of fuel	

Question number	Answer		Mark
1(c)	any two from :move beaker closer to spirit burner (1)		(2) AO3-3
	use a metal {calorimeter/beaker} instead of glass (1)		
	use (draft) shields (1)		
	place a lid on the beaker (1)		
	insulate the (sides of the) beaker (1)	reject use a polystyrene beaker	

Question number	Answer	Additional guidance	Mark
2(a)	6 or 7 points plotted correctly (2) or 4 or 5 points plotted correctly (1)	allow +/- half a square	(3) AO2-1
	best fit curve starting at (0,0) (1)	for MP3, curve must be a single smooth curved line going through most or all of THEIR plotted points (ecf allowed), or if the points are not visible, through most or all of the correct values reject curves going above or below 100cm³ by more than half a square reject straight line / dot to dot straight lines bar charts – max 2 marks for plotting points if time value is clear	

Question number	Answer	Additional guidance	Mark
2(b)(i)	13	answer may be given in table	(1) AO2-1

Question number	Answer	Additional guidance	Mark
2(b)(ii)	An explanation linking	Note: a comparison of the rate of marble chips with that of marble powder is ignored ignore anything about rate increasing at the beginning / starts fast	(3) AO3-2
	rate of reaction decreases / reaction is slower (1)	allow (rate of) reaction slows down ignore references to volumes of gas produced ignore reaction stops	
	as {reactants /acid/ marble chips} are used up (1)	allow {concentration/amount} of acid decreases / marble chips getting smaller allow {marble chips have / acid has} reacted allow less {reactants/ marble chips/ acid} available ignore limiting factor/ reaction is ending	
	so less frequent collisions (1)	allow fewer (successful) collisions ignore less particles have less energy	

Question number	Answer	Additional guidance	Mark
2(c)	graph to show	there must be a line from part (a) to award these marks if lines are not labelled, make a reasonable assumption about which is C mark independently.	(2) AO3-2
	 initial line steeper and to the left (1) 	line should start from start of original line	
	• line levelling off at 100 cm³ before 5 minutes (1)	all levelling off within half a square of original line	

Question number	Answer	Additional guidance	Mark
3(a)	An explanation linking		(2) AO1-1
	• 1 <u>electron</u> (1)	allow 1 is the last number of the electronic configuration (1) ignore electronic configurations written out reject incorrect number of electrons	
	• in outer shell(s) (1)	MP2 depends on MP1 for outer allow {highest energy / last} for shell allow ring, energy level, orbital	
		allow: 1 outer electron (2) 1 valence electron (2) have to lose 1 electron to get full outer shell (2) same number of electrons in outer shell (1) forms a +1 ion by losing one electron (1)	

Question number	Answer	Mark
3(b)	C soft enough to be cut by a knife / low melting point is the only correct answer A and D are incorrect because alkali metals do not have a high density B is incorrect because alkali metal compounds are not blue in colour	(1) AO1-1

Question number	Answer	Additional guidance	Mark
3(c)	$2 \text{ K(s)} + \text{Br}_2(g) \rightarrow 2 \text{ KBr(s)}$	allow multiples	(2) AO2-1
	balancing (1)	ignore 'two'	
	state symbol s (1)	ignore 'solid'	

Question number	Answer	Additional guidance	Mark
3(d)(i)	An explanation linking	reject compound/ molecule/ ion / elements once	(2) AO1-1
	 (atoms) {of same element / with same number of protons} / all contain 19 protons / same atomic number (1) 	allow same protons ignore electrons reject different protons	
	different number of neutrons / different mass <u>number</u> / have 20, 21, 22 neutrons (1)	allow different / extra / more / fewer neutrons ignore different mass / relative atomic mass reject different electrons	

Question number	Answer	Additional guidance	Mark
3(d)(ii)	39.1348/39.135/ 39.13/ 39.1 with or without working scores 2	Final answer of 39 with no working scores 0. Final answer of 39 rounded from correct working scores 2. allow rounding of values in the 3 sums allow ecf for MP2 if transcription error(s) e.g 93.52 allow ecf for MP2 if formula is correct but error in	(2) AO2-1
	$93.25 \times 39 + 40 \times 0.02 + 6.73 \times 41 = 3913.48 (1)$ $\frac{3913.48}{100} = 39.1348 (1)$	calculation	
	OR $\frac{39 \times 93.25}{100}$ and $\frac{0.02 \times 40}{100}$ and $\frac{6.73 \times 41}{100}$ (1)		
	36.3675 + 0.008 + 2.7593 = 39.1348 (1)		

Question number	Answer	Additional guidance	Mark
4(a)	proton atom molecule nanoparticle in the correct order (2)	allow proton molecule atom nanoparticle (1)	(2) AO1-1

Question number	Answer	Mark
4(b)(i)	C 9.0 x 10 ⁻⁸ is the only correct answer A is incorrect as it is 90000 nanometres B is incorrect as it is 9000 nanometres D is incorrect as it is 0.09 nanometres	(1) AO2-1

Question number	Answer	Additional guidance	Mark
4(b)(ii)	1:15 with or without working 3 marks	allow ecf	(3) AO3-2
	surface area = $90 \times 90 \times 6 = 48 600 (1)$		
	volume = 90 x 90 x 90 = 729 000 (1)		
	$\frac{729\ 000}{48\ 600} = 15\ (1)$ answer = 1 : 15	surface area calculated correctly evaluated (1) volume calculated	
	answer – 1 . 15	ratio 1:90 scores 2	
		<u>48600</u> = 0.066 (2) 729000	
		$\frac{729000}{8100} = 90 (2)$	
		<u>8100</u> = 0.011 (1) 729000	

Question number	Answer	Additional guidance	Mark
4(c)(i)	F F	allow lowercase f allow diagram to show 1, 2, 4 or 6 carbon atoms eg F	(2) AO2-1

Question number	Answer	Additional guidance	Mark
4(c)(ii)	Use (1) Property (1) Reason (1) (Property & reason MUST depend on use) Examples: • for coating (frying) pans (1) • because it is {slippery/non stick} (1) • food will not stick to the (frying) pan (1) OR • clothing /carpets (1) • because it is non-stick (1) • easy to clean / will not stain (1) OR • bottom of skis (1) • because it is slippery (1) • less friction on snow (1)	USES allow: pans / saucepans / tennis rackets / named kitchen equipment / piping / skis ignore: sports equipment (in general) / 'kitchenware' / windows / window ledge / toothpaste PROPERTIES allow: slippery / smooth / non-stick / unreactive / does not conduct electricity / non-toxic / high melting point ignore: strong / lightweight / high boiling point other reasonable uses include: lubricants - reduces friction graft material in surgery - inert/non-reactive prevent insects from climbing surfaces - slippery insulation of wiring & electrical circuits - does not conduct electricity/high melting point plumbers' tape - flexible/waterproof bottles - inert/non-reactive raincoat / rainjacket - waterproof Goretex™ clothing - waterproof Umbrella - water repellant flame retardant material (2) - high melting point hair straighteners - non-stick/no hair damage allow any reasonable use	(3) AO1-1

Question number	Answer	Mark
5(a)	B carbon dioxide is the only correct answer	(1) AO3-2b
	A , C and D are incorrect because the gas thought to be the highest percentage in the Earth's early atmosphere is carbon dioxide	

Question number	Answer	Additional guidance	Mark
5(b)	OR (2)	for any marks must be molecule with two H and one S atom, but ignore shape/ bond angles unlabelled atoms can be assumed to be H and S max 1 mark if charge on molecule allow dots or crosses or a mixture of both allow with no circles ignore inner shells even if incorrect	(2) AO2-1
	one shared pair of electrons between S atom and each of two H atoms (1) rest of molecule correct (1)	MP2 dependent on MP1	

Question number	Answer	Additional guidance	Mark
5(c)	An explanation linking any 3 from:sulfur/ S (is present as an impurity) (1)	ignore any references to nitrogen oxides/ nitric acid	(3) AO1-1
	 (when fuel burns) {impurity/sulfur} is {burned/ combusted/ oxidised/ reacts with oxygen} (1) sulfur dioxide/ SO₂ (formed) (1) 	$S + O_2 \rightarrow SO_2$ scores MP1, MP2 and MP3	
	 sulfur dioxide dissolves in {rain/ water/ clouds} (1) 	allow sulfur dioxide <u>reacts</u> with {rain/ water/ clouds} ignore sulfur dioxide mixes with {rain/ water/ clouds}	
	sulfuric acid is formed (1)	allow forms sulfurous acid. suitable equation forming H_2SO_3 or H_2SO_4 scores MP3, MP4 and MP5	

Question number	Answer	Additional guidance	Mark
5(d)(i)	pH meter	allow pH probe allow universal indicator/ UI	(1) AO3-3a
		reject any other indicators	
		ignore pH paper/ pH strips/ pH scale/ pH indicator	

Question number	Answer	Additional guidance	Mark
5(d)(ii)	 An explanation linking one pair from: use {sulfuric / sulfurous} acid (rather than hydrochloric acid) (1) because acid rain contains {sulfuric / sulfurous} acid / does not contain hydrochloric acid (1) OR use rainwater rather than pure water (1) because rainwater {does not have a pH 7 of / is not pure water} (1) 	allow formulae	(2) AO3-3b
	 use acid with a higher pH / a pH between pH 4 and pH 6 (1) because acid rain has a higher pH than 2 (1) 	allow use a less concentrated acid allow use a range of pH values (1) so that the effect of different pH can be found (1) allow a specific control variable e.g: kept at same light levels (1) because the plants may grow faster in different light conditions (1) ignore: use more plants/ use a variety of plants / leave for a longer time / have several sets of the experiment / repeat the experiment / water every day	

Question number	Answer	Mark
6(a)(i)	C oxidising, harmful and hazardous to the environment is the only correct answer A, B are incorrect because none of the substances are flammable	(1) AO1-1
	D is incorrect because the third symbol does not mean corrosive	
	D is incorrect because the third symbol does not mean corrosive	

Question number	Answer	Additional guidance	Mark
6(a)(ii)	An explanation linking one pair from:	mark independently ignore any other suggestions not included in markscheme	(2) AO2-2
	use a fume cupboard (1)because (chlorine/it) is a toxic gas (1)	ignore masks/ breathing apparatus/ well ventilated room allow poisonous	
	OR		
	 wear gloves/ goggles/ safety glasses (1) 		
	 because the concentrated hydrochloric acid is corrosive (1) 	allow acids 'burns' skin/ eyes	
	OR • do not dispose of any reactants / products down the drain (1)	allow dispose of substances correctly	
	 because {potassium manganate/ chlorine /it} is hazardous to the environment (1) 	allow specific hazards e.g. kills fish	

Question number	Answer	Additional guidance	Mark
6(b)	so {gas / chlorine} moves (from flask) to gas jar	ignore to deliver substances ignore to connect the apparatus / to stop gas escaping	(1) AO1-1

Answer	Additional guidance	Mark
An explanation linking:	reject chlor <u>ide</u> once	(2) AO2-2
 chlorine will turn the damp litmus paper (red then) white / bleached (1) 	reject bleaches then turns red for MP1	
 so that you can see when the jar is full (1) 	allow so you know {when to stop the reaction/ when enough chlorine has been made}/ to detect chlorine / to show that chlorine has been made / to see if chlorine is escaping	
	allow gas for chlorine in MP2	
	reject to test pH for MP2	
	An explanation linking: • chlorine will turn the damp litmus paper (red then) white / bleached (1)	An explanation linking: chlorine will turn the damp litmus paper (red then) white / bleached (1) so that you can see when the jar is full (1) allow so you know {when to stop the reaction/ when enough chlorine has been made}/ to detect chlorine / to show that chlorine has been made / to see if chlorine is escaping allow gas for chlorine in MP2

Question number	Answer	Additional guidance	Mark
6(d)	$2KMnO_4 + 16HCI \rightarrow 2MnCI_2 + 2KCI + 5CI_2 + 8H_2O$	allow multiples do not penalise incorrect cases, subscripts e.g allow CL ² ignore state symbols	(3) AO2-1
	all 6 formulae on correct sides of arrow (2) 4 or 5 formulae on correct sides of arrow (1) balancing of correct formulae only (1)		

Question number	Answer	Additional guidance	Mark
7(a)(i)	Propene H H C H H H H H H H H H H H H H H H H	ignore any circles drawn on other molecules must not include hydrogen	(1) AO1-1

Question number	Answer	Additional guidance	Mark
7(a)(ii)	Br Br H H—C—C—C—H H H H Br on neighbouring carbon atoms (1) rest of molecule correct with no double bond, two bromines and no extra products (1)	allow CH ₂ BrCHBrCH ₃ (1) OR Br H H C C C H Br H H (1) OR H C C C H H H H (1) ignore the molecular formula	(2) AO2-1

Question number	Answer	Additional guidance	Mark
7(a)(iii)	water (1)	allow H ₂ O	(2) AO2-1
	carbon dioxide (1)	allow CO ₂	
		allow answers in either order allow lowercase/non subscripts	

Question number	Indicative content	Mark
*7(b)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 6 marks FERMENTATION dissolve glucose in water to form a solution place glucose solution in a suitable flask add yeast to glucose solution place fermentation mixture in warm room/water bath / 25-40°C fit air lock or equivalent in neck of flask reaction stops when bubbles stop decant ethanol solution from yeast/ethanol mixture or filter out yeast CONCENTRATION fractional distillation place the dilute ethanol in round bottom flask /suitable vessel add a fractionating column onto the round bottom flask /suitable vessel and a thermometer on top of the of fractionating column add condenser to top of fractionating column run water into bottom of condenser heat round bottom flask/vessel to above boiling point of ethanol / below the boiling point of wate collect concentrated ethanol from end of condenser Allow labelled diagrams	(6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1 a basic description of either process or a very basic description of both	1-2	add yeast to glucose (1) concentrate the ethanol using fractional distillation (1) add yeast to glucose then use fractional distillation (2) use fractional distillation, heat the ethanol solution to above boiling point of ethanol (2)
Level 2 A detailed description of one of the processes or a basic description of both processes	3-4	add yeast to glucose solution and keep in at 25-35°C then use fractional distillation to concentrate (3) mix glucose in water to form a solution and add yeast and keep warm, cotton wool in neck of flask, decant yeast when bubbles stop (4) Use fractional distillation, place the dilute ethanol in round bottom flask, add a fractionating column with a thermometer add condenser to top of fractionating column. Heat the round bottom flask to above boiling point of ethanol (4)
Level 3 both processes described with one described in detail	5-6	put glucose and yeast into conical flask and warm to 35°C, use an airlock to prevent oxygen, decant ethanol solution from mixture then use fractional distillation (5) put glucose solution and yeast into conical flask and warm to around 30°C, use an airlock to prevent oxygen entering flask, decant ethanol solution from mixture then use fractional distillation, place the dilute ethanol in round bottom flask, add a fractionating column onto the round bottom flask and heat, collect concentrated ethanol from top of fractionating column (6)

Level	Mark	Descriptor
	0	No rewardable material.
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Question number	Answer	Mark
8 (a)	 A is not correct as this is percentage of hydrogen in ammonia B is not correct as this is the mass of hydrogen multiplied by the mass of nitrogen C is not correct as this is the mass of hydrogen multiplied by the mass of ammonia 	(1) AO2-1

Question number	Answer	Mark
8 (b)(i)	C arrow R is the only correct answer	(1) AO2-1
	A, B and D are incorrect because they do not show the activation energy	

Question number	Answer	Additional guidance	Mark
8 (b)(ii)	A description to include: any two for 1 mark all three for 2 marks		(2) AO1-1
	 energy is taken in breaking bonds (in the reactants) 	allow breaking bonds is endothermic	
	 energy is given out making bonds (in the products) 	allow forming bonds is exothermic	
	more energy is given out than taken in	allow less energy taken in than given out	
		ignore products have less energy than reactants	
		ignore reaction is exothermic / gives out energy alone	
		for energy taken in allow : absorbed / needed / used /required	
		for energy given out allow: released	

Question number	Answer	Additional guidance	Mark
8 (b)(iii)	-76 with or without working scores 4	allow ecf	(4) AO2-1
	BROKEN 944 + (3 x 436) = 2252 (1)	ignore sign	
	MADE 2 x (3x388) = 2328 (1)	ignore sign	
	DIFFERENCE (broken) 2252 – (made) 2328 (1)	MP3 for difference between their 2 values	
	ANSWER = - 76 (1)	MP4 for correct evaluation, including correct sign, of bonds broken – bonds made using their values	
		(+)76 scores 3 (+)1088 scores 3 (+)604 scores 3 (+)1476 scores 3 -1088 scores 2 -604 scores 2	
		-604 Scores 2	ļ

Question number	Answer	Additional guidance	Mark
8 (c)	an explanation linking AMMONIA	Mark independently	(3) AO1-1
	ammonia {is simple molecular / has weak intermolecular forces}	allow weak {forces / bonds} between molecules allow intermolecular bonds reject anything ionic for MP1	
	SILICON DIOXIDE silicon dioxide is {giant covalent / has strong covalent bonds} (1)	allow macromolecular reject anything ionic / simple molecular for MP2	
	DIFFERENCE more {heat / energy} to break bonds in silicon dioxide than intermolecular forces in ammonia	in MP3 mark is for saying more energy/ heat needed to break the 'attractions' <u>in silicon dioxide</u> than <u>in ammonia</u> . The 'attractions' do not have to be correct.	
		allow the energy required to break the attractions in ammonia is small and the energy required to break the attractions in silicon dioxide is large	

Question number	Answer		Mark
9(a)(i)	C surfacing roads fuel for trains A and B are incorrect as bitumen is not u	fuel for large ships is the only correct answer used as a fuel for large ships	(1) AO1-1
	D is not correct as diesel oil is not used for fuel for large ships		

Question number	Answer	Additional guidance	Mark
9(a)(ii)	An explanation linking	allow ORA	(2) AO1-1
	 (viscosity increases down the column) as molecules are {larger/ longer/ more carbons} (1) 		
	 because there are stronger {intermolecular forces / forces between molecules} (1) 	allow stronger intermolecular bonds/ forces of attraction/ (surface area of) contact	
		allow more intermolecular forces	

Question number	Answer	Additional guidance	Mark
9(b)	M_r of $CH_2 = 12 + (2x1) = 14 (1)$	allow ecf throughout MP1 must be for CH ₂	(4) AO3-1
	<u>56</u> = 4 (1) 14	allow 14 x 4 = 56	
	formula of $Y = 4 \times CH_2 = C_4H_8$ (1)	allow Y has 4C and 8H C_4H_8 without working scores MP3 only. $C_4H_8 = (4 \times 12) + (8 \times 1) = 56$ scores MP1, 2 and 3	
	formula of $X = (C_6H_{14} + C_4H_8 =) C_{10}H_{22} (1)$	for MP4 must be written as formula $C_{10}H_{22}$ without working scores MP4 only	
		ecf can be awarded for MP4 as long as working for alkene to be added is seen	
		ignore formula of $X = (C_6H_{14} + CH_2 =) C_7H_{16}$	

Question number	Indicative content	Mark
9(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. AO1 (3 marks) and AO2 (3 marks) Ignore any issues with methane itself e.g. it is a greenhouse gas. Ignore different colours of flame with open/ closed air hole. OPEN AIR-HOLE • air-hole open, allows lots of oxygen to mix with methane • therefore complete combustion takes place • $CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$ • carbon dioxide and water are produced. CLOSED AIR-HOLE • air-hole closed, less oxygen can enter to mix with methane • therefore incomplete combustion takes place • therefore incomplete combustion takes place • e.g $2CH_4 + 3O_2 \rightarrow 2CO + 4H_2O$ (allow other correct examples) • carbon monoxide can be produce	(6)
	HARMFUL EFFECTS CO is odourless and colourless carbon monoxide combines with haemoglobin in place of oxygen/ reduces capacity of blood for oxygen therefore toxic carbon/ soot can also be produced can aggravate asthma / respiratory problems soot makes buildings dirty carbon dioxide and water are greenhouse gases absorb heat energy radiated from Earth which is re-radiated back into the atmosphere increases greenhouse effect causes global warming/ climate change melt polar ice caps / sea levels rise	

Level	Mark	Descriptor
	0	No rewardable material.
Level 1 A description of open or closed air -hole or description of one harmful effect	1-2	closed air-hole gives less oxygen (1) closed air-hole gives less oxygen, open air-hole gives more oxygen (1) closed air-hole gives incomplete combustion (1) closed air-hole has less oxygen so incomplete combustion (2) complete combustion gives carbon dioxide (1) when the air-hole is open, oxygen allows complete combustion gives carbon dioxide and water (2)
Level 2 Description of two of: open air-hole/ closed air hole/ harmful effect	3-4	A closed air-hole gives less oxygen which produces soot and carbon monoxide which is toxic because it bonds to haemoglobin. (3) More oxygen gives carbon dioxide and water and incomplete combustion gives carbon monoxide and water. (4) Complete combustion produces carbon dioxide and water which are both greenhouse gases. Greenhouse gases absorb heat energy radiated from the earth and re-radiates it, this causes global temperatures to rise and leads to an increase in polar ice caps melting. (4)
Level 3 All three aspects must be covered Description of all three of: open air-hole/ closed air-hole/ harmful effect(s)	5-6	Incomplete combustion makes carbon monoxide but complete combustion produces carbon dioxide and water which are both greenhouse gases. Greenhouse gases absorb heat energy radiated from the earth and re-radiates it, this causes global temperatures to rise and leads to an increase in polar ice caps melting. (5) A closed air-hole gives incomplete combustion which produces carbon monoxide which is an odourless and colourless toxic gas. Complete combustion produces carbon dioxide and water which are both greenhouse gases. Greenhouse gases absorb heat energy radiated from the earth and re-radiates it, increases the greenhouse effect and temperature of the Earth's atmosphere. (6)

Level	Mark	Descriptor
	0	No awardable content
Level 1	1-2	 Demonstrates elements of chemical understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. (AO1) The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2)
Level 2	3-4	 Demonstrates chemical understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. (AO1) The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2)
Level 3	5-6	 Demonstrates accurate and relevant chemical understanding throughout. Understanding of the scientific ideas is detailed and fully developed. (AO1) The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2)

Question number	Answer	Additional guidance	Mark
10 (a)(i)	An explanation linking one pair from:		(2) AO3-3b
	 use a (nichrome) wire instead of a wooden splint (1) 	allow metal loop / metal rod / platinum loop / (metal) inoculating loop	
	 so the wood does not burn / as the wire will not interfere with the flame colour (1) 		
	OR		
	leave the wooden splint to soak in water longer (1)		
	 so that the wooden splint does not burn when testing the sample (1) 		
		allow use hydrochloric acid (instead of water) (1) so that the sample vaporises more easily (1)	
		ignore (use hydrochloric acid) to remove impurities / sterilise	
		ignore use a photometer	

Question number	Answer	Mark
10 (a)(ii)	B lilac is the only correct answer A is incorrect as this is the colour for copper	(1) AO1-1
	C is incorrect as this is the colour for calcium D is incorrect as this is the colour for lithium	

Question number	Answer	Additional guidance	Mark
10 (b)	A description including : • add (dilute) nitric acid (1)	ignore warming reject hydrochloric acid /sulfuric acid for MP1	(3) AO1-1
	add silver nitrate (solution) (1)		
	a white <u>precipitate</u> (1)	MP3 is dependent on addition of silver nitrate	

Question number	Answer	Additional guidance	Mark
10 (c)(i)	2.1 scores 3 with or without working	allow ECF throughout	(3) AO2-1
	$\frac{25}{1000} = 0.025 (1)$		
	$0.025 \times 83 = 2.075 (1)$		
	= 2.1 (1)		

Question number	Answer	Additional guidance	Mark
10 (c)(ii)	$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4(3)$	allow $3Ba^{2+} + 3SO_4^{2-} \rightarrow 3BaSO_4$ incorrect balancing of correct species max 2	(3) AO2-1
	Ba²⁺ (1)	reject Cl ⁻	
	SO₄²⁻ (1)	reject Al ³⁺	
	\rightarrow BaSO ₄ (1)	reject AICI ₃	
		ignore any state symbols even if incorrect	